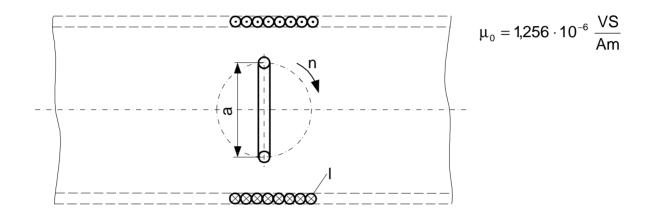

Aufgabenstellung für die Endrunde:

- 1. Ein Gleichstrom I = 3 A fließt durch drei hintereinander geschaltete, je 4 m lange Leiter aus unterschiedlichem Material. In den Leitern werden in t = 2 s die Wärmeenergien $W_1 = 1$ J; $W_2 = 3$ J; $W_3 = 4$ J umgesetzt.
 - a) Berechnen Sie den Betrag der elektrischen Feldstärke und den Spannungsfall in jedem der drei Leiter!
 - b) Stellen Sie den Potentialverlauf über den drei Leitern dar! Am Ende des dritten Leiters wird das Potential $\varphi = 0$ festgelegt.
- 2. a) Berechnen Sie die maximale Leistung, die einer Taschenlampenbatterie $(U_1 = 4.5 \text{ V}; R_i = 2.3 \Omega)$ entnommen werden kann!
 - b) Bestimmen Sie den dazu notwendigen Belastungswiderstand!
 - c) Berechnen Sie die Arbeitspunkte, bei denen der Batterie die Leistung $P_a = 1,5 \text{ W}$ entnommen wird!
- **3.** Bestimmen Sie den Ersatzwiderstand R_{ab} und alle Ströme und Spannungen!



4. Gegeben ist eine elektrolytische Anordnung, wobei sich zwischen zwei parallelen Metallplatten der Fläche A und des Abstands d der Elektrolyt mit der Leitfähigkeit κ befindet.

Berechnen Sie Feldstärke, Stromdichte, Spannungsabfall und Stromstärke im Elektrolyten, wenn eine Leistungsaufnahme der Anordnung von P = 1000 W vorliegt!

 $A = 5000 \text{ cm}^2$; d = 25 mm; $\kappa = 3.5 \cdot 10^{-2} \text{ S/cm}$

- **5.** Eine quadratische Spule (Seitenlänge a = 4 cm; N = 100) rotiert mit der Drehzahl $n = 300 \text{ min}^{-1}$ im Inneren einer langen Zylinderspule, die je cm 10 Windungen hat und von einem Strom I = 5 A durchflossen wird. In der Skizze ist die Spule zur Zeit t = 0 eingezeichnet.
 - a) Berechnen Sie den zeitlichen Verlauf der in der rotierenden Spule induzierten Spannung!
 - b) Berechnen Sie die Drehzahl, für die der Maximalwert der induzierten Spannung U = 10 mV beträgt!

