
	1	2	3	4	5	6	S
Name:							

Aufgabenstellung für die Endrunde 90min; mit Formelsammlung

- Ein Kupferdraht ($s_{Cu} = 40 \text{m}$; $A_{Cu} = 0.75 \text{mm}^2$; $\kappa_{20Cu} = 56 \text{Sm/mm}^2$; $\alpha_{Cu} = 0.0039 \text{K}^{-1}$) und ein Konstantandraht ($A_{Ko} = 1.0 \text{mm}^2$; $\kappa_{20Ko} = 2 \text{Sm/mm}^2$; $\alpha_{Ko} = -5 \cdot 10^{-5} \text{K}^{-1}$) sind in Reihe geschaltet.
 - Berechnen Sie die Länge s_{Ko} des Konstantandrahtes, damit der Gesamtwiderstand der Schaltung temperaturunabhängig wird!
 - Berechnen Sie den Widerstand der Schaltung! b)
- 2. In ein luftisoliertes koaxiales Breitbandkabel ist durch eine Mantelbeschädigung Wasser eingedrungen und füllt das Kabel über eine Länge s = 10m. Zwischen Innen- und Außenleiter wird der Gleichstromwiderstand $R = 25.5\Omega$ gemessen.

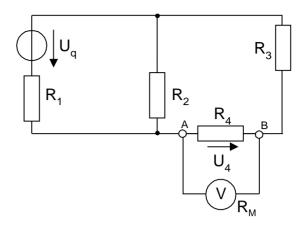
Berechnen Sie die Leitfähigkeit des eingedrungenen Wassers!

$$D_a = 16mm$$

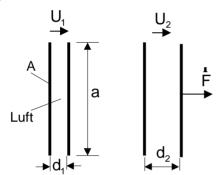
 $D_i = 4mm$

- 3. Eine Batterie hat die Leerlaufspannung $U_0 = 12.6 \text{V}$ und den Kurzschlussstrom $I_{\kappa} = 60A$.
 - Bestimmen Sie den Lastwiderstand Ra, bei dem die Leistung am Lastwiderstand maximal wird! Berechnen Sie die maximale Leistung!
 - Berechnen Sie die Lastwiderstände, an denen die Leistung P = 100W umgesetzt wird!

4. Gegeben ist nebenstehendes Netzwerk.


$$R_1 = R_2 = 100 \Omega$$

$$R_3 = 50 \Omega$$


$$R_4 = 100 k\Omega$$

$$U_q = 12 V$$

Bestimmen Sie den Innenwiderstand R_M des Spannungsmessers, damit die Spannung U₄ mit einem maximalen Fehler von 5% angezeigt wird!

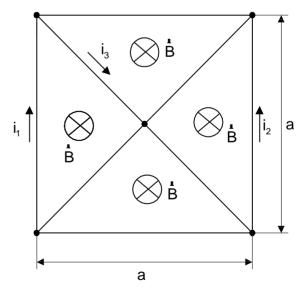
5.

Ein Plattenkondensator mit quadratischen Platten ($A=a^2$; a=10cm), dem Plattenabstand $d_1=3\text{mm}$ und dem Dielektrikum Luft ($\epsilon_0=8.85\cdot 10^{-12} \text{As/Vm}$) ist auf die Spannung $U_1=120\text{V}$ geladen.

- a) Berechnen Sie die Kondensatorspannung U_2 , wenn der Plattenabstand des geladenen Kondensators durch die Kraft $\overset{\bullet}{\mathsf{F}}$ auf $d_2 = 6 \text{mm}$ vergrößert wird!
- b) Bestimmen Sie den Betrag der Kraft F!

6. Ein homogenes Magnetfeld mit dem zeitlichen Flussdichteverlauf $B(t) = \hat{B} \cdot \cos \omega t$ durchsetzt senkrecht das dargestellte Drahtnetz. Jeder der Drähte hat den Querschnitt A und die Leitfähigkeit κ .

$$\hat{B} = 0.1T$$


$$\omega = 2\pi \cdot 50Hz$$

$$A = 1mm^{2}$$

$$a = 100mm$$

$$\kappa = 56Sm/mm^{2}$$

Berechnen Sie die Zeitfunktionen der Ströme i_1 ; i_2 ; i_3 !

