

Name:		

1	2	3	4	5	S

Tasks fort the finale

90min; with formulary (english edition)

1

Calculate $U_o = f(\Delta R)!$

 $\boldsymbol{2}$ The left circuit is given. Transform it in the right circuit and calculate U_q and $R_i!$

3

A filament lamp $P_N = 60W$; $U_N = 230V$ is connected in series with a coil (resistance $R_{so} = 100\Omega$, inductivity L) and supplied by ac voltage

$$u(t) = \sqrt{2} \cdot 400 \,\text{V} \cdot \cos\left(2\pi \cdot 50 \,\text{Hz} \cdot t + 45^{\circ}\right)$$

Calculate the nessesary value of the inductivity L of the coil, for operation the filament lamp with its nominal values!

4

The following plate capacitor is given

$$s_1 = 1,5 cm$$
 $\epsilon_{r1} = 6,5$

$$s_2 = 2.0$$
cm $\varepsilon_{r2} = 1$

$$s_3 = 2.5 cm$$
 $\epsilon_{r3} = 4$

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \, \text{As/Vm}$$

- a) Calculate the electrical strength of the field E_1 in the dielectric 1!
- **b)** Calculate the voltages U₁, U₂, U₃!

The wire-loop (a = 50mm, b = 30mm) is moved with a speed of v = 0,2m/s through the homogeneous magnetic field (B = 1T, c = 60mm).

Calculate the variation in time of the voltage u(t), displayed on the voltmeter! $(R_M ? R_{Sch})$