Name: \qquad

1	2	3	4	5	Σ

Tasks fort the finale
90 min ; with formulary (english edition)

1
Calculate $U_{0}=f(\Delta R)$!

2

The left circuit is given. Transform it in the right circuit and calculate U_{q} and R_{i} !

A filament lamp $P_{N}=60 \mathrm{~W} ; \mathrm{U}_{\mathrm{N}}=230 \mathrm{~V}$ is connected in series with a coil (resistance $R_{\text {sp }}=100 \Omega$, inductivity L) and supplied by ac voltage
$\mathrm{u}(\mathrm{t})=\sqrt{2} \cdot 400 \mathrm{~V} \cdot \cos \left(2 \pi \cdot 50 \mathrm{~Hz} \cdot \mathrm{t}+45^{\circ}\right)$

Calculate the nessesary value of the inductivity L of the coil, for operation the filament lamp with its nominal values!

4

The following plate capacitor is given

$$
\begin{array}{ll}
\mathrm{s}_{1}=1,5 \mathrm{~cm} & \varepsilon_{\mathrm{r} 1}=6,5 \\
\mathrm{~s}_{2}=2.0 \mathrm{~cm} & \varepsilon_{\mathrm{r} 2}=1 \\
\mathrm{~s}_{3}=2,5 \mathrm{~cm} & \varepsilon_{\mathrm{r} 3}=4 \\
\varepsilon_{0}=8,85 \cdot 10^{-12} \mathrm{As} / \mathrm{Vm}
\end{array}
$$

a) Calculate the electrical strength of the field E_{1} in the dielectric 1!
b) Calculate the voltages $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}$!

5

The wire-loop ($\mathrm{a}=50 \mathrm{~mm}$, $b=30 \mathrm{~mm}$) is moved with a speed of $v=0,2 \mathrm{~m} / \mathrm{s}$ through the homogeneous magnetic field ($B=1 \mathrm{~T}, \mathrm{c}=60 \mathrm{~mm}$).

Calculate the variation in time of the voltage $u(t)$, displayed on the voltmeter!
$\left(R_{M} ? R_{\text {Sch }}\right)$

