

Tasks for the finale 90 min ; with formulary (english edition)

1

 $U_a = 12V$ $U_b = 10V$ $R_1 = 10\Omega$ $R_2 = 20\Omega$ $R_3 = 5\Omega$

Calculate the voltages $U_1, U_2, U_3!$

2 $R_1 = 10k\Omega$ $U_1 = 10V; U_2 = 1V;$ $U_3 = 0.1V; U_4 = 0.01V$

a)

Calculate the values of R₂; R₃; R₄!

b)

Calculate the resistor, that loads the voltage source!

3

The circiut is supplied by ac voltage (frequency f = 50Hz). The measuring instruments show:

U = 48V I = 2,2A P = 79,2WDescribe the behavior of the circuit with the help of 2 electronic devices and calculate their values!

4

A sheet of paper ($\epsilon_r=2,3$) is put into a plate capacitor (area $A=0,4m^2$, distance $d_1=3mm$, permittivity (vacuum) $\epsilon_0=8,85\cdot10^{-12}\,As\,/\,Vm$). The measured capacity is C=4,0nF.

Calculate the thickness d of the paper!

5

The magnetic flux Φ in the given iron core is produced by the field coil (number of windings N₀) with current i: $\Phi(t) = 20 \cdot 10^{-4} \text{Vs} \cdot \sin \omega t$ with frequency f = 50Hz

$N_0 = 200$	$N_{1} = 10$	$N_{2} = 20$
$N_{3} = 33$	$N_{4} = 4$	

a)

Calculate the magnetic resistor R_m of the iron core. The current in the field coil is given by: $i = 20mA \cdot sin \omega t$

b)

Calculate the voltages u_{ab} , u_{cd} , u_{ef} and u_{gh} !

