

Tasks for the finale 90 min ; with formulary (english edition)

1

The following circiut is given (figure).

A resistance of $R_a^{}=$ 10,85 $\Omega\,$ is measured

between the terminal a1 and a2. The resistance between b1 und b2 is

 $R_{\rm h} = 13,02\Omega$.

 $R_1 + R_2 = R_{12} = 9,47\Omega$

Calculate the values of $R_1, R_2, R_3!$

2

For the given circuit the resistor R is $R = R_1 + R_2 = 1k\Omega$ The maximum load of R is $P_{max} = 40W$

a)

The value of the resistance for parallel connection of R_1 and R_2 is given by 240 Ω .

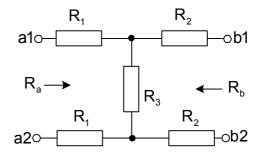
Calculate the values of R_1 und $R_2!$

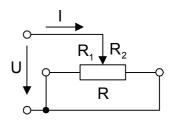
b)

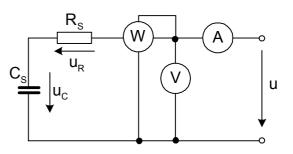
Calculate the maximum values of voltage and current!

3

The circiut is supplied by ac voltage:


 $u = \sqrt{2} \cdot 100V \cdot \cos \omega t$


frequency f = 1000 Hz.


The instruments shows:

U = 100V I = 4,6A P = 347W

- a) Calculate R_S and C_S!
- b) Calculate the root-mean-square values of the voltages u_R and $u_C!$

4

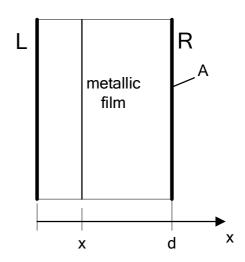
The following plate capacitor (A, d, ε_o) with a homogeneous field is given (figure). In the dielectric with the charge Q a metallic film of the size A is situated in a distance x from the plate L (left plate). The metallic film is parallel with the a area of equipotential.

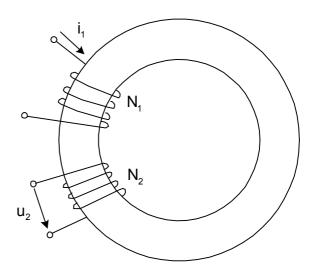
Calculate the capacitance C of the capacitor as function of the position x of the film!

- a) The film is metallically contacted with the plate R (right plate).
- **b)** The film is metallically contacted with the plate L.
- **c)** The film is insulating located.

5

In the given iron core a current i_1 with frequency f = 50 Hz is flowing in the coil 1 $i_1(t) = 20mA \cdot \sin \omega t$


The magnetic conductance of the core is given by:


 $\Lambda=\text{0,}5\text{mH}$

The number of windings are:

 $N_1 = 200$ $N_2 = 33$

Calculate the function of the time for the voltage $u_2(t)!$

