Name:

1	2	3	4	5	6	\sum

Tasks for the finale test
90 min ; with formulas (english edition)

1

The following circuit is given (figure).
The resistance R_{x} is setting to fulfill the condition: $\quad U_{X}=0,1 \mathrm{U}$
Calculate the value of R_{X} !

$$
\begin{aligned}
& \mathrm{R}_{1}=1 \mathrm{k} \Omega \\
& \mathrm{R}_{2}=2 \mathrm{k} \Omega \\
& \mathrm{R}_{3}=3 \mathrm{k} \Omega
\end{aligned}
$$

2

The following circuit is given (figure).

$$
\begin{aligned}
& \mathrm{C}_{1}=5 \mu \mathrm{~F} \quad \mathrm{C}_{2}=1 \mu \mathrm{~F} \\
& \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=1 \mathrm{M} \Omega
\end{aligned}
$$

The capacitor C_{1} is charged up to a voltage $\mathrm{U}_{1}=200 \mathrm{~V}$. The circuit breaker is closed in the moment $t=0$.

a) Calculate the values of the voltages u_{1} und u_{2} for the condition $t \gg 0$!
b) Calculate the total energy stored in the capacitors for the moments $\mathrm{t}<0$ and $\mathrm{t} \gg 0$!
c) Calculate the value of the electric current in the moment after closing the circuit breaker.
d) Calculate the time constant of the switching operation!

3

A small cylindrical coil $2\left(s_{2}=15 \mathrm{~cm} ; d_{2}=3 \mathrm{~cm} ; \mathrm{N}_{2}=100\right)$ is situated in the middle of a long cylindrical air-core coil 1 ($s_{1}=1 \mathrm{~m} ; \mathrm{d}_{1}=8 \mathrm{~cm} ; \mathrm{N}_{1}=800$).

Coil 1 is connected to AC voltage u_{1} :
$u_{1}=100 \mathrm{~V} \cdot \cos (2 \pi \cdot f \cdot t)$ with
$\mathrm{f}=50 \mathrm{kHz}=50000 \mathrm{~Hz}$

Calculate the peak value of the voltage \hat{u}_{2} measurably on the circuit points of the coil 2!

The following bridge circiut is given (figure).

$\mathrm{R}_{1}=200 \Omega$;
$\mathrm{R}_{3}=100 \Omega$
$R_{4}=130 \Omega$
The maximum load for all of the resistors is given by $P_{\text {max }}=1 \mathrm{~W}$
a) Calculate the resistor R_{2} for the bridge balance!
b) Calculate the maximum permissible value of the voltage U_{q} in case of bridge balance!

5

A homogeneous magnetic field $B=0.2 \mathrm{~T}$ with down grade of $\beta=20^{\circ}$ against the plane of the both rails. On the rails are moved two metallic rods - always in contact with the rails - with the velocity $\mathrm{v}_{1}=0.2 \mathrm{~m} / \mathrm{s}$ and $\mathrm{v}_{2}=0.5 \mathrm{~m} / \mathrm{s}$.

Calculate the voltage U_{12} indicated by the measurement device. The loop resistance of the measuring circuit is given by R_{s}, the internal resistance of the voltage meter is given by R_{M}. It is imperative: $R_{M} \gg R_{s}$!

