

Tasks for the finale test 90 min ; with formulas (english edition)

1

The following circuit is given (figure). The resistance R_X is setting to fulfill the condition: $U_X = 0,1U$

Calculate the value of $R_X!$

$$R_1 = 1k\Omega$$
$$R_2 = 2k\Omega$$
$$R_3 = 3k\Omega$$

2

The following circuit is given (figure).

 $\begin{array}{ll} C_1=5\;\mu\text{F} & C_2=1\;\mu\text{F} \\ R_1=R_2=R_3=1\;M\Omega \end{array}$

The capacitor C_1 is charged up to a voltage $U_1 = 200$ V. The circuit breaker is closed in the moment t = 0.

- a) Calculate the values of the voltages u_1 und u_2 for the condition t>>0!
- b) Calculate the total energy stored in the capacitors for the moments t<0 and t>>0!
- c) Calculate the value of the electric current in the moment after closing the circuit breaker.
- d) Calculate the time constant of the switching operation!

3

A small cylindrical coil 2 ($s_2 = 15$ cm; $d_2 = 3$ cm; $N_2 = 100$) is situated in the middle of a long cylindrical air-core coil 1 ($s_1 = 1$ m; $d_1 = 8$ cm; $N_1 = 800$).

Coil 1 is connected to AC voltage $u_{1:}$

 $u_1 = 100V \cdot cos(2\pi \cdot f \cdot t)$ with

f = 50kHz = 50000Hz

Calculate the peak value of the voltage \hat{u}_2 measurably on the circuit points of the coil 2!

The following bridge circiut is given (figure).

 $\begin{array}{l} {\sf R}_1 = 200 \; \Omega; \\ {\sf R}_3 = 100 \; \Omega \\ {\sf R}_4 = 130 \; \Omega \end{array}$

The maximum load for all of the resistors is given by P_{max} = 1 W

- a) Calculate the resistor R₂ for the bridge balance!
- b) Calculate the maximum permissible value of the voltage U_q in case of bridge balance!

5

A homogeneous magnetic field B = 0.2T with down grade of β = 20° against the plane of the both rails. On the rails are moved two metallic rods - always in contact with the rails - with the velocity v₁ = 0.2m/s and v₂ = 0.5m/s.

Calculate the voltage U_{12} indicated by the measurement device. The loop resistance of the measuring circuit is given by R_s , the internal resistance of the voltage meter is given by R_M . It is imperative: $R_M >> R_s$!