Name: \qquad

1	2	3	4	5	Σ

Tasks fort he finale test
90min ; with formula sheet (English edition)

1

Given is the electrical circuit according to figure 1

$$
\begin{aligned}
& \mathrm{R}_{1}=0,9 \Omega \quad \mathrm{R}_{2}=5 \Omega \\
& \mathrm{R}_{3}=\mathrm{R}_{4}=2 \Omega \\
& \mathrm{R}_{5}=1 \Omega \\
& \mathrm{R}_{6}=\mathrm{R}_{7}=10 \Omega \\
& \mathrm{U}_{\mathrm{q}}=20 \mathrm{~V} \text { und } \mathrm{R}_{\mathrm{i}}=0,1 \Omega
\end{aligned}
$$

Calculate the amounts of all currents from I_{1} to I_{7} and all voltages from
U_{1} to U_{7} and U_{1} !

figure 1

2

Connect four equal voltage sources $\left(U_{q}=1,5 \mathrm{~V}\right.$ and $\left.\mathrm{R}_{\mathrm{i}}=1 \Omega\right)$ in that way, that the terminal voltage is $1 . \mathrm{U}=6 \mathrm{~V}, 2 . \mathrm{U}=3 \mathrm{~V}$ and $3 . \mathrm{U}=1,5 \mathrm{~V}$.
a) Draw the connections for the tree cases and calculate for each R_{i} and I_{k} !
b) Calculate the current I for each source in case of a additional load resistance of $\mathrm{R}_{\mathrm{a}}=2 \Omega$!
c) Give for each source the load resistance R_{a}, to achieve the maximum of power on R_{a} !

3

Calculate the mechanical force between two conductors of the length $\mathrm{I}=1 \mathrm{~m}$ and with the distance of $\mathrm{a}=5 \mathrm{~cm}$ and a direct current of $\mathrm{I}=1 \mathrm{kA}$ (according to figure 2).

Indicate the direction of force in figure 2 !
figure 2

A high voltage cable with
$\mathrm{U}_{0}=220 \mathrm{kV}$ according to figure 3 can
be considered as cylindrical capacitor.
a) Calculate the capacitance C of this cable with the following parameters: diameter of conductor $d=53 \mathrm{~mm}$ thickness of insulation $D=28 \mathrm{~mm}$ length of the cable $\quad I=10 \mathrm{~km}$ $\varepsilon_{\mathrm{r}}=2,3$ and $\mathrm{f}=50 \mathrm{~Hz}$
b) Calculate the capacitive charging current of this cable ($\omega=2 \pi f$)!

figure 3
c) Calculate the length of the cable where the capacitive charging current is equal to the nominal current of the cable for a nominal current density of $S=2 \mathrm{~A} / \mathrm{mm}^{2}$!

5

A current $\mathrm{I}=1000$ A circulate in a quadratic conductor loop with a side length of $S=1 \mathrm{~m}$.
a) Calculate the magnetic field strength H and the magnetic flux density B in the middle of the loop (point a) in figure 4!
b) Calculate H and B again for a point b) which is 50 cm above the point a)!

figure 4

