

	1	2	3	4	5	S
Name:						

Tasks fort he finale test 90min ; with formula sheet (English edition)

1

Given is the electrical circuit according to figure $\ensuremath{\textbf{1}}$

$$\begin{split} R_1 &= 0,9 \ \Omega \quad R_2 = 5 \ \Omega \\ R_3 &= R_4 = 2 \ \Omega \\ R_5 &= 1 \ \Omega \\ R_6 &= R_7 = 10 \ \Omega \\ \end{split} \\ U_q &= 20 \ V \quad und \ R_i = 0,1 \ \Omega \end{split}$$

Calculate the amounts of all currents from

 I_1 to I_7 and all voltages from

 U_1 to U_7 and U_i !

figure 1

2

Connect four equal voltage sources ($U_q = 1,5$ V and $R_i = 1$ Ω) in that way, that the terminal voltage is 1. U = 6 V, 2. U = 3 V and 3. U = 1,5 V.

- a) Draw the connections for the tree cases and calculate for each R_i and $I_k!$
- b) Calculate the current I for each source in case of a additional load resistance of $R_a = 2 \Omega!$
- c) Give for each source the load resistance R_a , to achieve the maximum of power on $R_a!$

3

Calculate the mechanical force between two conductors of the length I = 1 m and with the distance of a = 5 cm and a direct current of I = 1 kA (according to figure 2).

Indicate the direction of force in figure 2 !

4

A high voltage cable with

 U_{o} = 220 kV according to figure 3 can be considered as cylindrical capacitor.

a) Calculate the capacitance C of this cable with the following parameters: diameter of conductor d = 53 mm thickness of insulation D = 28 mm length of the cable I = 10 km $\epsilon_r = 2,3$ and f = 50 Hz

b) Calculate the capacitive charging current of this cable ($\omega = 2 \pi f$)!

c) Calculate the length of the cable where the capacitive charging current is equal to the nominal current of the cable for a nominal current density of $S = 2 \text{ A /mm}^2$!

figure 3

5

A current I = 1000 A circulate in a quadratic conductor loop with a side length of S = 1 m.

- a) Calculate the magnetic field strength H and the magnetic flux density B in the middle of the loop (point a) in figure 4!
- b) Calculate H and B again for a point b) which is 50 cm above the point a)!

figure 4