	1	2	3	4	5	Σ
Name:						

Tasks fort he finale test 90 min; with formula sheet (English edition)

1

Given is the electrical circuit according to figure 1

$$R_1 - R_7 = 10 \Omega$$

 $U_{q1} - U_{q4} = 2 V$
 $R_{i1} - R_{i4} = 1 \Omega$

- a) Simplify the circuit in figure 1 to a basic circuit with only one voltage source and one load resistance
- b) Calculate for the basic circuit the parameter U_q , R_i , R_a , I and U_{AB}
- c) Calculate the amounts of all currents from I_1 to I_7 and all voltages from U_1 to U_7 !

Figure 1

2

An electrical current of I=100~A is flowing through a conductor consisting of three different materials in series connection like shown in figure 2 a)

The conductivity of the materials is: $\kappa_1 = 1$ S/cm $\kappa_2 = 2$ S/cm $\kappa_3 = 4$ S/cm

- a) Calculate the voltage U_1 U_3 over each material part!
- b) Calculate the electrical field intensity E₁ E₃ over each material part!

The same current of I = 100 A is flowing through a conductor consisting of three different materials in parallel connection like shown in figure 2 b). The conductivity of the materials is the same as in figure 2 a).

- c) Calculate the different currents $I_1 I_3$ and the voltage!
- d) Calculate the current density $S_1 S_3$ in each material part!

Figure 2a

Figure 2b

The determination of the resistance R is done by two different measurements. The first one (figure 3a), exact for the voltage, with the results U = 9,0 V and I = 76 mA under consideration of a resistance of the voltage meter R_{MU} = 9,0 k Ω . The second one (figure 3b), exact for the current, with the results U = 10,0 V and I = 80 mA.

Calculate the resistance R and the resistance of the current meter R_{MI}.

R

Figure 3a Figure

4

A high voltage cable with a two layer insulation according to figure 4 can be considered as two cylindrical capacitors with the following parameters:

 $U_{total} = 10 \text{ kV}, \text{ } f = 50 \text{ Hz}$ length of the cable I = 100 m

 $\begin{aligned} r_a &= 4 \text{ cm} \\ r_i &= 1 \text{ cm} \\ r_1 &= 2 \text{ cm} \\ \epsilon_{r1} &= 3 \\ \epsilon_{r2} &= 1 \end{aligned}$

Figure 4

- a) Calculate the capacitances C_{total}, C₁ and C₂ of this cable!
- b) Calculate the electrical charge $Q = Q_1 = Q_2$ of this cable!
- c) Calculate the voltage over each layer of the insulation U₁ and U₂!

5 The current in an unlimited long conductor is I = 1000 A

- a) Calculate the magnetic field strength H for a straight conductor like indicated in figure 5 a) in three different points P_1 , P_2 and P_3 (r = 0.5 m).
- b) Calculate the magnetic field strength H for a right angle conductor like indicated in figure 5 b) in three different points P₁, P₂ and P₃.
- c) Calculate for b) the magnetic flux density B in P₁ if the conductor is surrounded by air.

Figure 5