1	2	3	4	5	Σ

Tasks fort he finale test 90 min; with formula sheet (English edition)

1
Given is the electrical circuit according to figure 1
$R_{1}-R_{7}=10 \Omega$
$\mathrm{U}_{\mathrm{q} 1}-\mathrm{U}_{\mathrm{q} 4}=2 \mathrm{~V}$
$R_{i 1}-R_{i 4}=1 \Omega$
a) Simplify the circuit in figure 1 to a basic circuit with only one voltage source and one load resistance
b) Calculate for the basic circuit the parameter U_{q}, R_{i}, R_{a}, I and $U_{A B}$
c) Calculate the amounts of all currents from I_{1} to I_{7} and all voltages from U_{1} to U_{7} !

Figure 1

2

An electrical current of $I=100 \mathrm{~A}$ is flowing through a conductor consisting of three different materials in series connection like shown in figure 2 a)
The conductivity of the materials is: $\kappa_{1}=1 \mathrm{~S} / \mathrm{cm} \quad \kappa_{2}=2 \mathrm{~S} / \mathrm{cm} \quad \kappa_{3}=4 \mathrm{~S} / \mathrm{cm}$
a) Calculate the voltage $U_{1}-U_{3}$ over each material part!
b) Calculate the electrical field intensity $\mathrm{E}_{1}-\mathrm{E}_{3}$ over each material part!

The same current of $I=100 \mathrm{~A}$ is flowing through a conductor consisting of three different materials in parallel connection like shown in figure 2 b).
The conductivity of the materials is the same as in figure $2 a)$.
c) Calculate the different currents $I_{1}-I_{3}$ and the voltage!
d) Calculate the current density $S_{1}-S_{3}$ in each material part!

Figure 2a

Figure 2b

3

The determination of the resistance R is done by two different measurements.
The first one (figure 3 a), exact for the voltage, with the results $\mathrm{U}=9,0 \mathrm{~V}$ and $\mathrm{I}=76$ mA under consideration of a resistance of the voltage meter $\mathrm{R}_{\mathrm{MU}}=9,0 \mathrm{k} \Omega$.
The second one (figure 3b), exact for the current, with the results $U=10,0 \mathrm{~V}$ and $\mathrm{I}=80 \mathrm{~mA}$.

Calculate the resistance R and the resistance of the current meter $R_{M I}$.

Figure 3a

Figure 3b

4

A high voltage cable with a two layer insulation according to figure 4 can be considered as two cylindrical capacitors with the following parameters:
$\mathrm{U}_{\text {total }}=10 \mathrm{kV}, \mathrm{f}=50 \mathrm{~Hz}$
length of the cable $\quad \mathrm{I}=100 \mathrm{~m}$
$\mathrm{r}_{\mathrm{a}}=4 \mathrm{~cm}$
$r_{i}=1 \mathrm{~cm}$
$\mathrm{r}_{1}=2 \mathrm{~cm}$
$\varepsilon_{\mathrm{r} 1}=3$
$\varepsilon_{\mathrm{r} 2}=1$

Figure 4
a) Calculate the capacitances $\mathrm{C}_{\text {total }}, \mathrm{C}_{1}$ and C_{2} of this cable!
b) Calculate the electrical charge $Q=Q_{1}=Q_{2}$ of this cable!
c) Calculate the voltage over each layer of the insulation U_{1} and U_{2} !

5

The current in an unlimited long conductor is I = 1000 A
a) Calculate the magnetic field strength H for a straight conductor like indicated in figure $5 a$) in three different points P_{1}, P_{2} and $P_{3}(r=0,5 m)$.
b) Calculate the magnetic field strength H for a right angle conductor like indicated in figure 5 b) in three different points $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3}.
c) Calculate for b) the magnetic flux density B in P_{1} if the conductor is surrounded by air.

Figure 5

