1	2	3	4	5	Σ

Tasks fort he finale test
90 min ; with formula sheet (English edition)

1

Given is the electrical DC circuit according to figure 1
Calculate the amounts of all currents ($I_{\text {total }}$ and I_{1} to I_{11}) and all voltages

$\mathrm{R}_{1}-\mathrm{R}_{11}$	$=10 \Omega$
U_{q}	$=20 \mathrm{~V}$
R_{i}	$=7,5 \Omega$

Figure 1

2

An electrical aluminium conductor ($\kappa=35 \mathrm{~m} / \Omega \mathrm{mm}^{2}$ and $\alpha_{20}=3,7710^{-3} \mathrm{~K}^{-1}$) with a diameter of $\mathrm{d}=6 \mathrm{~mm}$ and a length of $\mathrm{I}=2 \mathrm{~m}$ is connected to a voltage source of $\mathrm{U}_{\mathrm{q}}=400 \mathrm{~V}$ (the resistance of the connecting wires is negligible)
a) Calculate the resistance R of this conductor having a temperature of 20 degrees celsius!
b) Calculate the resistance R of this conductor having a temperature of 120 degrees celsius!
c) Calculate the current I in the conductor for both temperatures!
d) Calculate the magnetic field strength H at a distance from the conductor of $a=10 \mathrm{~cm}$ in the middle of the length $\mathrm{I}=2 \mathrm{~m}$ (see figure 2) for both currents!

Figure 2

3

Simplify the DC circuit in figure 3 to a basic circuit having only one voltage source and one load resistance and calculate the characteristic parameters U_{q}, R_{i}, R_{a}, I and U_{AB} !
$\mathrm{R}_{1}=1 \Omega, \quad \mathrm{R}_{2}=2 \Omega, \quad \mathrm{R}_{3}=3 \Omega, \quad \mathrm{R}_{4}=2 \Omega, \quad \mathrm{R}_{5}=1 \Omega$,
$\mathrm{U}_{\mathrm{q} 1}=12 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{i} 1}=3 \Omega, \quad \mathrm{U}_{\mathrm{q} 2}=5 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{i} 2}=1,5 \Omega, \quad \mathrm{U}_{\mathrm{q} 3}=7 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{i} 3}=2,5 \Omega$,

Figure 3

A black box containing two basic circuit elements (R, L or C) is supplied by an AC voltage of $U=24 \mathrm{~V}(f=50 \mathrm{~Hz})$ and a current of $\mathrm{I}=1,1 \mathrm{~A}$
The measured reactive power is $Q=17,5$ var
Describe the black box behaviour by a drawing of these two basic circuit elements (R, L or C) and calculate their values!

5

A metallic rod is moving on two metallic rails at a constant speed $v=0,5 \mathrm{~m} / \mathrm{s}$ through a homogeneous magnetic field $B=1,2 \mathrm{~T}$ (see Figure 4)

Calculate the voltage indicated by the volt meter in case of a distance between the rails of $s=40 \mathrm{~cm}$

Figure 4

