

Tasks fort he finale test 90min; with formula sheet (English edition)

1

Given is the electrical circuit according to figure **1**

$$U_{q1} = 10 V$$
 $R_{i1} = 1\Omega$
 $U_{q2} = 10 V$ $R_{i2} = 1\Omega$
 $R_1 \cdots R_7 = 10 \Omega$

Calculate the values of all currents from I_1 to I_7 and all voltages from U_1 to U_7 and of U_{qAB} , R_{iAB} , U_{AB} , R_{aAB} !

2

The following circuit is given (figure 2).

A resistance of $R_a = 10,85 \Omega$ is measured between the terminal a1 and a2. The resistance between b1 and b2 is $R_b = 13,02 \Omega$.

 $R_1 + R_2 = R_{12} = 9,47 \ \Omega$

Calculate the values of R_1, R_2, R_3 !

figure 1

Given are three equals voltages sources according to fig. 3 with $U_q = 12 \text{ V}$ and

 $R_i = 2 \Omega$.

figure 3

Calculate for the 4 combination of this 3 voltage sources according to fig. 4 the resulting values of $\rm U_{q\,AB}\,$ and $\rm R_{iAB}\,.$

figure 4

4

A sheet of paper with a thickness of d = 0,2 mm is put into a plate capacitor (area A = 0,4 m²), distance d₁ = 1 mm, permittivity (vacuum) $\epsilon_0 = 8,85 \cdot 10^{-12} \text{ As/Vm}$). The measured capacity is C = 4,0 nF. Calculate the permittivity ϵ_r of the paper!

3

5

The magnetic flux Φ in the given iron core is produced by the field coil (number of windings N₀) with current i:

 $\Phi(t) = 20 \cdot 10^{-4} \text{ Vs} \cdot \sin \omega t$ with frequency f = 50 Hz

 $N_0 = 200$ $N_1 = 10$ $N_2 = 100$

a)

Calculate the magnetic resistance R_m of the iron core. The current in the field coil is given by: i = 20 mA \cdot sin ω t

b)

Calculate the voltages uab and ucd!

