## NEISSE - ELEKTRO 2000

Name: $\qquad$

| 1 | 2 | 3 | 4 | 5 | $\Sigma$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |

Tasks fort he finale test
90min ; with formula sheet (English edition)
1
Given is the electrical circuit according to figure 1

$\mathrm{R}_{1}$ up to $\mathrm{R}_{8}=2 \Omega$
and
$\mathrm{I}_{1}=10 \mathrm{~A}$

Figure 1
Calculate the amount of $R_{a b}$ and the amounts of all currents from $I_{1}$ to $I_{8}$ and all voltages from $U_{1}$ to $U_{8}$.

## 2

Calculate the values of the current $I_{2}$ and the current $I_{4}$ for the electrical circuit according to figure 2
$\mathrm{R}_{1}=1 \Omega \quad \mathrm{R}_{2}=1,5 \Omega \quad \mathrm{R}_{3}=6 \Omega \quad \mathrm{R}_{4}=1,5 \Omega \quad \mathrm{U}_{\mathrm{q} 1}=24 \mathrm{~V} \quad \mathrm{U}_{\mathrm{q} 2}=18 \mathrm{~V}$


Figure 2

A coil ( $\mathrm{N}=300$ ) according to figure 3 will move with a constant speed $\mathrm{v}=1,6 \mathrm{~m} / \mathrm{s}$ through a homogeneous magnetical field ( $B=1,2 T$ ).

Calculate the maximum voltage during this movement.


Figure 3

## 4

The AC circuit given by figure 4 is supplied by a voltage of $u=\sqrt{2} \cdot 100 \mathrm{~V} \cdot \cos \omega t$ with a frequency of $f=1000 \mathrm{~Hz}$.
The values, indicated on the measuring instruments are: $\mathrm{U}=100 \mathrm{~V} \quad \mathrm{I}=4,6 \mathrm{~A}$ and $P=347 \mathrm{~W}$.

Calculate the values of the resistance $R_{s}$ and the capacitance $C_{s}$.


Figure 4

## 5

A very long superconducting cable with a very small diameter can carry a maximum current of $\mathrm{I}=4000 \mathrm{~A}$.

Calculate the magnetic field strength $H$ and the magnetic flux density $B$ for this case in a distance of 1 m and 5 m and the minimum distance to the cable where $B$ is not less than $100 \mu \mathrm{~T}$.

