	1	2	3	4	5	Σ
Name:						

Tasks fort he finale test 90 min; with formula sheet (English edition)

1

Two conductors of Aluminium and Copper with the same cross section of $A = 2.5 \text{ mm}^2$ are connected in series and a current of I = 12 A is flowing through both.

a) Calculate the amounts of the current density S and the electric field strength E in both conductors for the following specific electrical resistances:

Copper $\rho = 0.017 \ 10^{-6} \ \Omega m$ Aluminium $\rho = 0.027 \ 10^{-6} \ \Omega m$

- b) Which cross section would be necessary for the aluminium conductor to have the same electric field strength E in both conductors?
- c) How long must be the aluminium conductor, to have the same resistance R than a copper conductor of a length of 10 m for both with the same cross section (A = 2,5 mm²)?
- d) Calculate the amount of this resistance R!

2

An Edison electric lamp with the following parameters P_N = 60 W and U_N = 230 V has an Wolfram heating wire (ρ_{20} = 0,055 Ω mm² / m) with a length of I = 60 cm and a diameter of d = 0,03 mm.

- a) Calculate the temperature of the heating wire in service ($\alpha = 0.0041 / K$)
- b) Calculate the current I and the electrical power P during switch-on at a temperature of $\vartheta = 20$ $^{\circ}\mathrm{C}$

(Help: Calculation of the resistance at service temperature: $P_N = U_N \ I_N$ and $R_B = U_N \ / \ I_N$)

Given is the electrical circuit according to figure 1

Figure 1

- a) Calculate the voltage U₄ without the resistance R₅ in this circuit!
- b) Which amount must have the resistance R_5 that the voltage U_4 is just 10 % of the voltage U_q ?
- c) Calculate for this case of b) the currents I₁ up to I₅ and the total current I_G of the voltage source!

4

Given is the series connection of 3 capacitors according to figure 2

Figure 2

- a) Calculate the total Capacitance C_{AB} the total Charge Q_{AB} and the voltages U_1 , U_2 and U_3 !
- b) To which amounts the total Capacitance C_{AB} , the total Charge Q_{AB} and the voltages U_1 , U_2 and U_3 will change in case of a breakdown of the capacitor C_3

In an infinite long conductor is the current flow of a direct current I = 100 A

- a) Calculate the amount of the magnetic field strength H and of the magnetic flux density (magnetic induction) B in a distance of r = 10 cm!
- b) Calculate the length I of the conductor to have in point P (see figure 3) 90% of the magnetic field strength H compared to the infinite long conductor!

Figure 3