NEISSE - ELEKTRO 2015

Name: \qquad

1	2	3	4	5	Σ

Tasks fort he finale test
90 min ; with formula sheet (English edition)

1

Two conductors of Aluminium and Copper with the same cross section of $\mathrm{A}=2,5 \mathrm{~mm}^{2}$ are connected in series and a current of $\mathrm{I}=12 \mathrm{~A}$ is flowing through both.
a) Calculate the amounts of the current density S and the electric field strength E in both conductors for the following specific electrical resistances:
Copper $\quad \rho=0,017 \quad 10^{-6} \Omega \mathrm{~m}$
Aluminium $\quad \rho=0,027 \quad 10^{-6} \quad \Omega \mathrm{~m}$
b) Which cross section would be necessary for the aluminium conductor to have the same electric field strength E in both conductors?
c) How long must be the aluminium conductor, to have the same resistance R than a copper conductor of a length of 10 m for both with the same cross section $\left(A=2,5 \mathrm{~mm}^{2}\right)$?
d) Calculate the amount of this resistance R !

2

An Edison electric lamp with the following parameters $P_{N}=60 \mathrm{~W}$ and $U_{N}=230 \mathrm{~V}$ has an Wolfram heating wire ($\rho_{20}=0,055 \Omega \mathrm{~mm}^{2} / \mathrm{m}$) with a length of $\mathrm{I}=60 \mathrm{~cm}$ and a diameter of $d=0,03 \mathrm{~mm}$.
a) Calculate the temperature of the heating wire in service ($\alpha=0,0041 / \mathrm{K}$)
b) Calculate the current I and the electrical power P during switch-on at a temperature of $\vartheta=20{ }^{\circ} \mathrm{C}$
(Help: Calculation of the resistance at service temperature: $P_{N}=U_{N} I_{N}$ and $R_{B}=$ $\mathrm{U}_{\mathrm{N}} / \mathrm{I}_{\mathrm{N}}$)

3

Given is the electrical circuit according to figure 1

Figure 1
a) Calculate the voltage U_{4} without the resistance R_{5} in this circuit!
b) Which amount must have the resistance R_{5} that the voltage U_{4} is just 10% of the voltage U_{q} ?
c) Calculate for this case of b) the currents I_{1} up to I_{5} and the total current I_{G} of the voltage source!

4

Given is the series connection of 3 capacitors according to figure 2

$$
\begin{aligned}
& \mathrm{C}_{1}=150 \mathrm{pF} \\
& \mathrm{C}_{2}=250 \mathrm{pF} \\
& \mathrm{C}_{3}=480 \mathrm{pF} \\
& \mathrm{U}_{\mathrm{AB}}=100 \mathrm{~V}
\end{aligned}
$$

Figure 2
a) Calculate the total Capacitance C_{AB} the total Charge Q_{AB} and the voltages U_{1}, U_{2} and U_{3} !
b) To which amounts the total Capacitance C_{AB}, the total Charge Q_{AB} and the voltages U_{1}, U_{2} and U_{3} will change in case of a breakdown of the capacitor C_{3}

5

In an infinite long conductor is the current flow of a direct current $\quad \mathrm{I}=100 \mathrm{~A}$
a) Calculate the amount of the magnetic field strength H and of the magnetic flux density (magnetic induction) B in a distance of $r=10 \mathrm{~cm}$!
b) Calculate the length I of the conductor to have in point P (see figure 3) 90% of the magnetic field strength H compared to the infinite long conductor!

Figure 3

