Name:

Tasks for the finale
90 min ; with formulary (english edition)

1
Calculate for the circuit a) and b) the total resistance.

$$
\begin{aligned}
& \mathrm{R}_{1}=20 \Omega \\
& \mathrm{R}_{2}=80 \Omega \\
& \mathrm{R}_{3}=3 \Omega \\
& \mathrm{R}_{4}=4 \Omega \\
& \mathrm{R}_{5}=5 \Omega
\end{aligned}
$$

a)

b)

2

The left circuit is given. Transform it in the right circuit and calculate U_{q}, R_{i} and the minimum of R_{a} to have maximum current of $1,0 \mathrm{~A}$ in the circuit.

A high voltage cable with a two layer insulation according to the figure can be considered as two cylindrical capacitors with the following parameters:
$\mathrm{U}=20 \mathrm{kV}, \mathrm{f}=50 \mathrm{~Hz}$
length of the cable $\quad I=1 \mathrm{~km}$
$\mathrm{r}_{\mathrm{a}}=5 \mathrm{~cm}$
$r_{i}=2 \mathrm{~cm}$
$r_{1}=3 \mathrm{~cm}$
$\varepsilon_{\mathrm{r} 1}=3$
$\varepsilon_{\mathrm{r} 2}=1$

a) Calculate the capacitances $\mathrm{C}_{\text {total }}, \mathrm{C}_{1}$ and C_{2} of this cable!
b) Calculate the electrical charge $Q=Q_{1}=Q_{2}$ of this cable!
c) Calculate the voltage over each layer of the insulation U_{1} and U_{2} !

4

Three parallel very thin conductors create a equilateral triangle (see figure).
Calculate the magnetic field intensity H in the point A and B of this high voltage bundle conductor with a current in each conductor of $I_{1}=I_{2}=I_{3}=100 \mathrm{~A}$. The distance between conductors is $\mathrm{a}=35 \mathrm{~cm}$.

5

A black box containing two basic circuit elements (R, L or C) is supplied by an AC voltage of $U=24 \mathrm{~V}(f=50 \mathrm{~Hz})$ and a current of $I=1,1 \mathrm{~A}$.
The measured reactive power is $Q=17,5$ var.
Describe the black box behaviour by a drawing of these two basic circuit elements (R, L or C) and calculate their values!

