

NEISSE-ELEKTRO 2017

Name:						
	1	2	3	4	5	Σ

Please use a separate sheet of paper for each task. Write your name on each of these papers.

Task 1

$$R_1$$
 = 7 Ω , R_2 = 13 Ω , R_3 = 24 Ω , R_4 = 80 Ω , R_5 = 160 Ω

- a) Calculate the total resistance R_{AB} between A and B for the circuit (without voltage source).
- b) On point A and B a voltage source is connected. You measure the current on resistor R_2 with I_2 = 1 A. Calculate the voltage and current for each resistor and the voltage source.

Task 2

With the circuit the following measurements were made:

- with $R_1 = 20 \Omega$: $I = I_1 = 0,240 A$
- with $R_2 = 50 \Omega$: $I = I_2 = 0,109 A$

The current meter has an inner resistance of $R_M = 2 \Omega$.

Calculate R_i and U_L for the voltage source!

Task 3

A loaded capacitor with capacity of C_0 = 1 μF and voltage U_0 = 1 kV will be parallel connected with three serial connected uncharged capacitors C_1 = 1 μF , C_2 = 2 μF , C_3 = 3 μF .

- a) Draw the circuit and mark all voltages with arrows.
- b) Calculate the total capacitance C.
- c) Calculate the voltages U₀, U₁, U₂, U₃ and charges Q₀, Q₁, Q₂, Q₃ after connecting.

Task 4

A heater (resistor) needs a power of P = 20 kW with a DC voltage of 440 V. It is connected with a 2,4 km long cable. The cable has two wires of copper (conductivity $\kappa = 56 \cdot 10^6$ A/(Vm)) with diameter of 8 mm each. (area A of circle with diameter d: A = $\pi / 4 \cdot d^2$)

- a) How many percent of the in the cable injected power is lost in the cable?
- b) Which voltage is needed at the beginning of the cable?

Task 5

For an ideal transformer with two coils the following is known:

- primary voltage (sine wave form): U₁ = 230 V₂
- secondary voltage: U₂ = 10 V₂
- number of turns in primary coil: N₁ = 2001
- secondary load resistor: $R_2 = 10 \Omega$
- a) Calculate the value of primary current I₁.
- b) Determine the number of turns in the secondary winding.

The load resistor is replaced by a temperature-sensitive resistor of R_2 = 10 Ω at 20°C. The resistor has a coefficient α = 0,004/K and is heated to 90°C.

c) Calculate the new value of primary current I₁.

Before end, write your name on each paper and fold your exercise sheet according the picture:

