Name:

1	2	3	4	5	Σ

Tasks for the finale 90 min ; with formulary (english edition)

1

Calculate all missing currents and voltages in the following circuit.

2

Calculate the resistance between the terminals A and B in the following circuit, if any partial resistance is 100Ω.

3

Draw the base circuit and calculate with: $U_{q}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{i}}=2 \Omega ; \mathrm{R}_{\mathrm{a}}=13 \Omega$
a) the current I and the voltage U across the resistor R_{a}
b) the short-circuit current I_{k}
c) the power P converted in the external resistance R_{a}
d) Calculate the current through the resistor R_{a}, if a resistor $R_{p}=5 \Omega$ is connected in parallel with it.

Given is the following capacitor circuit:

Calculate:
a) the total capacity
b) All partial voltages on the capacitors

Note: capacitors connected in series \rightarrow same charge Q Parallel connected capacitors \rightarrow same voltage U

5

On a flat coil body in the form shown in the following figure is a coil wound with $\mathrm{N}=200$ turns, which is traversed by a current of $I=30 \mathrm{~mA}$.
Calculate the electric field strength at point P.

