

NEISSE - ELEKTRO 2018

	1	2	3	4	5	Σ
Name:						

Tasks for the finale

90 min; with formulary (english edition)

1

Calculate all missing currents and voltages in the following circuit.

2

Calculate the resistance between the terminals A and B in the following circuit, if any partial resistance is $100~\Omega$.

3

Draw the **base circuit** and calculate with: $U_q = 12V$; $R_i = 2\Omega$; $R_a = 13\Omega$

- a) the current I and the voltage U across the resistor Ra
- b) the short-circuit current I_k
- c) the power P converted in the external resistance Ra
- d) Calculate the current through the resistor R_a , if a resistor R_p = 5Ω is connected in parallel with it.

Given is the following capacitor circuit:

Calculate:

- a) the total capacity
- b) All partial voltages on the capacitors

Note: capacitors connected in series → same charge Q
Parallel connected capacitors → same voltage U

5

On a flat coil body in the form shown in the following figure is a coil wound with N = 200 turns, which is traversed by a current of I = 30 mA. Calculate the electric field strength at point P.

