
Internationale Elektrotechnik - Olympiade

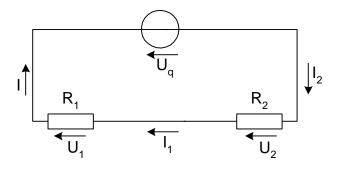
NEISSE – ELEKTRO

Formulas

english edition

version 2019-04

Simple Circuit

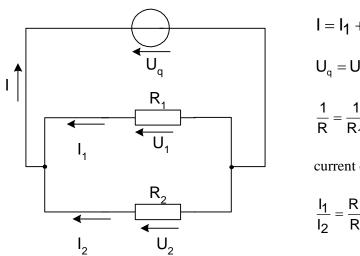

electrical voltage U	$U=\phi_1-\phi_2$	Φ1	electrical potential of point 1
electrical current I	$I = \frac{dQ}{dt}$ under the condition of a stationary current (I = constant) apply to: $I = \frac{Q}{t}$	Q	electrical potential of point 2 electric charge time
current density S	$S = \frac{I}{A}$	 	- U ₀
electrical resistor R	$R = \frac{U}{I}$		R ↓
electrical conductance G	$G = \frac{1}{R}$		
electrical power P	$P = U \cdot I$		C C
electrical work W	$W = P \cdot t$	U_0	voltage of the voltage source
OHM`s law	under the condition $\vartheta = \text{constant apply to:}$ $U \sim I, \frac{U}{I} = \text{constant}$		
assessment of resistor	under the condition $\vartheta = \text{constant apply to:}$ $R = \frac{\rho \cdot 1}{A}$		
electrical conductivity $\gamma(\kappa)$	$\gamma = \frac{1}{\rho}$	ρ	temperature specific electrical resistance length of the conductor
influence of the temperature on the electrical resistor	$\Delta \mathbf{R} = \alpha \cdot \mathbf{R}_{20} \cdot \Delta \vartheta \text{ with } \Delta \vartheta = \vartheta - 20^{\circ} \mathbf{C}$ $\mathbf{R}_{\vartheta} = \mathbf{R}_{20} (1 + \alpha \cdot \Delta \vartheta)$	A R ₉ R ₂₀	resistor by 20 °C temperature coefficient
		~	en portante eserificient

Direct current circuits

F

Series connection of resistors

 $^+$

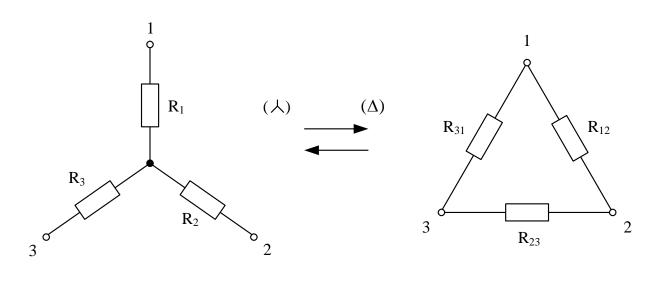


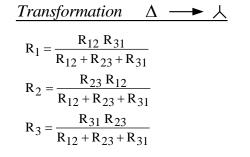
$$I = I_1 = I_2 = ... = I_n$$

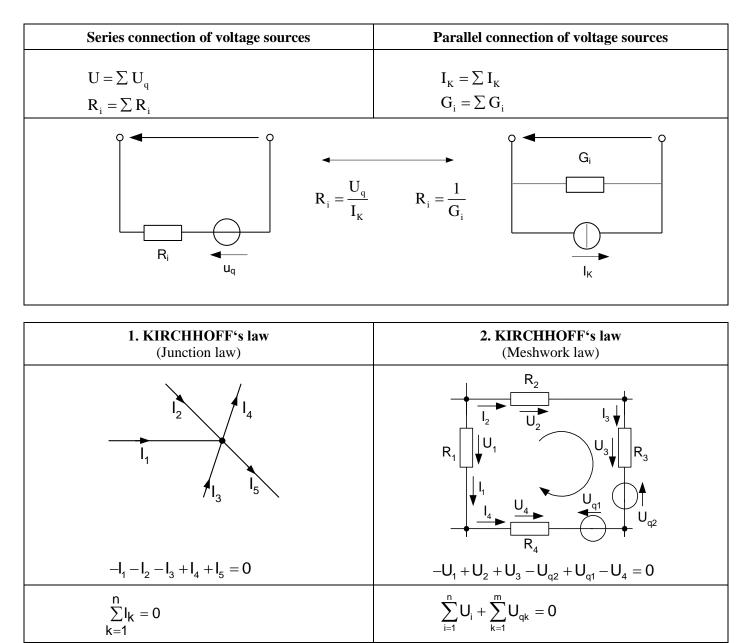
 $U_q = U_1 + U_2 + ...U_n$
 $R = R_1 + R_2 + ...R_n$

potential divider rule:

$$\frac{U_1}{U_2} = \frac{R_1}{R_2} \qquad \qquad \frac{U_1}{U_q} = \frac{R_1}{R}$$


Parallel connection of resistors


 $I = I_{1} + I_{2} + \dots + I_{n}$ $U_{q} = U_{1} = U_{2} = \dots = U_{n}$ $\frac{1}{R} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{n}}$ current divider rule:


$$\frac{l_1}{l_2} = \frac{R_2}{R_1}$$
 $\frac{l_1}{l} = \frac{R}{R_1}$

Network transformation

$$\frac{Transformation}{R_{12} = R_1 + R_2 + \frac{R_1 R_2}{R_3}}$$
$$R_{23} = R_2 + R_3 + \frac{R_2 R_3}{R_1}$$
$$R_{31} = R_3 + R_1 + \frac{R_3 R_1}{R_2}$$

Electrical field

C

electrical charge Q	$Q = N \cdot e$ $Q = \int_{t_1}^{t} I(t) dt$	 N number of electrones e elementary charge (p. 14) I current intensity t time F force
COULOMB's law	for point charces, apply to: $F = \frac{1}{4\pi \cdot \varepsilon_0 \cdot \varepsilon_r} \frac{Q_1 \cdot Q_2}{r^2}$	$ \begin{array}{ll} F & \text{force} \\ \epsilon_0 & \text{permitivity (vacuum) (p. 14)} \\ \epsilon_r & \text{dielectric constant} \\ r & \text{distance between the point charges} \end{array} $
electrical field strength E	$\vec{E} = \frac{\vec{F}}{Q}$ for homogeneous electric field, apply to: $E = \frac{U}{s}$	$\begin{array}{c c} Q_1 & \overline{F_1} & \overline{F_2} & Q_2 \\ \hline & & r \\ s & \text{distance between the points, which have the voltage drop U} \end{array}$
electrical flux density D	$\vec{D} = \varepsilon_0 \cdot \varepsilon_r \cdot \vec{E}$ for vacuum apply to: $\varepsilon_r = 1$	
dielectric constant ɛ	$\epsilon = \epsilon_0 \cdot \epsilon_r$	
electrical flux Ψ	$\Psi = \int \vec{D} d\vec{A}$ under the condition $\vec{D} = \text{constant und } \vec{D} \parallel \vec{A}$ apply to: $\Psi = D \cdot A$	A area
electrical potential ϕ	$\varphi = \frac{W}{Q} \qquad \varphi = \int_{P_0}^{P_1} \vec{E}(s) d\vec{s}$	P ₁ • P ₂
electrical voltage U	$U = \phi_1 - \phi_2 \qquad U = \int_{P_2}^{P_1} \vec{E}(s) d\vec{s}$ for homogeneous field, apply to: $U = \vec{E} \cdot \vec{s}$	 W dislocation work on a charge Q in the electrical field φ₁ electrical potential in point P₁ φ₂ electrical potential in point P₂ s distance

Capacitors

capacitance C of an capacitor	$C = \frac{Q}{U}$			
breakdown strength E _d	$E_d = \frac{U}{d}$			
electrical strength of field E of an plate capacitor	$E = \frac{U}{d}$			- + dielectric
capacitance C of an plate capacitor	$\mathbf{C} = \boldsymbol{\varepsilon}_0 \cdot \boldsymbol{\varepsilon}_r \cdot \boldsymbol{\varepsilon}_r$	$\frac{A}{d}$	Q U	charge voltage
capacitance C of an zylindrical capacitor	$C = \frac{2\pi \cdot \varepsilon_0}{\ell n}$	$\frac{\mathbf{\epsilon}_{r} \cdot \ell}{\frac{r_{a}}{r_{i}}}$	d ε ₀ ε _r Α	distance between the plates permittivity (vacuum) (p. 14) dielectric constant area
energy E of the electric field (plate capacitor)	$E = \frac{1}{2}C\cdotU^2$	2		
charge of an capacitor	$U_{C} = U \cdot \left(1\right)$ $I = I_{0} \cdot e^{-1}$	$-e^{\left(-\frac{t}{R\cdot C}\right)}$ $\frac{t}{R\cdot C}$	U _C U R C t I I I ₀ e	capacitor-voltage charging voltage OHM's resistor capacitor time current intensity current intensity (t = 0) EULER's number
discharge of an capacitor	$U_{C} = U \cdot e^{\left(-\frac{1}{2} \right)}$ $I = I_{0} \cdot e^{\left(-\frac{1}{2} \right)}$			
time constant τ	$\tau = R \cdot C$			
Series connection of capacitors		Р	arallel cor	nnection of capacitors
$C_1 C_2$		_		

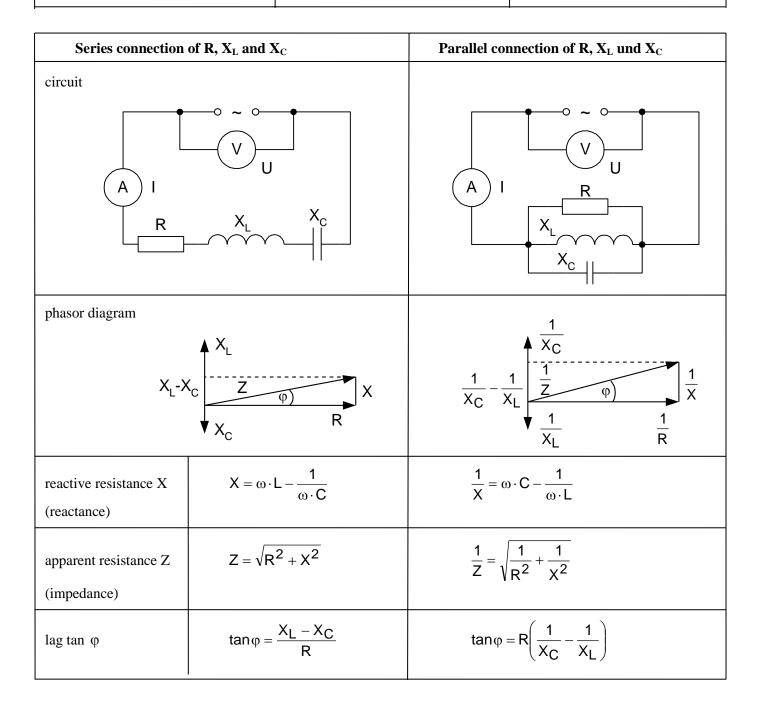
 $\frac{1}{U_{1}} \qquad \underbrace{U_{2}}_{U_{2}}$ $\frac{1}{C} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \dots + \frac{1}{C_{n}}$ $U = U_{1} + U_{2} + \dots + U_{n}$ $U = U_{1} = U_{2} = \dots = U_{n}$

6

Magnetic field

magnetic strength of field H	for the field outside of an direct conductor with the current I, apply to:	I current density r distance from conductor
	$H = \frac{I}{2\pi r}$ $H = \frac{I}{4\pi \cdot r} (\cos \alpha_1 - \cos \alpha_2)$ for the field inside of an long coil with the current I, apply to: $H = \frac{N \cdot I}{1}$ for homogeneous magnetic field, apply to:	+ + + + + + + + + + + + + + + + + + +
	$H = \frac{\Theta}{s} \rightarrow \frac{\Theta}{s}$	N winding number of the coil 1 length of the coil
magnetic flux density B (magnetic induction)	$\vec{B} = \mu_0 \cdot \mu_r \cdot \vec{H}$	
permeability µ	$\mu = \mu_0 \cdot \mu_r$ for vacuum, apply to: $\mu_r = 1$	
magnetic flux Φ	$\Phi = \int \vec{B} d\vec{A}$ for \vec{B} = constant	
	and $\vec{B} \parallel \vec{A}$ apply to: $\Phi = B \cdot A$	Θ magnetomotive force s circle of an area μ_0 permittivity (vacuum, p.14)
magnetic Voltage V	$V = \int_{P_2}^{P_2} \vec{H}(s) d\vec{s}$	μ _r permeability A area
	under the condition of homogeneous field, apply to: $V = \vec{H} \cdot \vec{s}$	
magnetic resistor R _m	$R_{m} = \frac{1}{\mu_{0} \cdot \mu_{r} \cdot A}$ $R_{m} = \frac{V}{\Phi}$	s distance
	$\vec{F}_{L} = Q \cdot \vec{v} \times \vec{B}$	l lenght A area
force of an moved electron F_L	under the condition $\vec{v} \perp \vec{B}$ apply to:	Q charge v speed
(LORENTZ's force)	$F_{L} = Q \cdot v \cdot B$	1 length of the conductor
force F to a conductor	$\vec{F} = 1 \cdot \vec{I} \times \vec{B}$]
with current I	under the condition $\vec{I} \perp \vec{B}$ apply to:	F F
	F=1·I·B	$+ \varphi$ 1 $\overline{1} \varphi$ $-$
energy E of the magnetic field of a coil with current I	$E = \frac{1}{2}L \cdot I^2$	
		L inductivity of the coil
		<u> </u>

Electromagnetic field


Induction law	$\begin{aligned} u_{iq} &= \frac{d\Phi}{dt} \\ \text{under the condition of steady change} \\ \text{of the magnetic field and } \vec{B} \perp \vec{A} \\ \text{for a coil, apply to:} \\ u_{iq} &= N \frac{\Delta (B \cdot A)}{\Delta t} \\ \text{for an moved conductor } \vec{v} \perp \vec{B} \text{ apply to:} \\ u_{iq} &= v \cdot B \cdot \ell \end{aligned}$	U _i induced voltage Φ magnetic flux N number of windings t time B magnetic flux density A area \vec{B}
self-induced voltage in a coil inductivity L of an coil	$u = L \cdot \frac{dI}{dt}$ under the condition of steady change of the current, apply to: $u = L \cdot \frac{\Delta I}{\Delta t}$ for an long coil, apply to: $L = \frac{\mu_0 \cdot \mu_r \cdot N^2 \cdot A}{L}$	v speed of the conductor l length of the conductor or the coil \vec{B} I current intensity μ_0 permittivity (vacuum, p.14) μ_r permeability A area

Alternating current circuit

current i in alternating current circuit	momentary value: $i = \hat{I} \cdot \sin(\omega \cdot t + \phi_0)$ root-mean-square value: $I = \frac{1}{\sqrt{2}} \hat{i} \approx 0,7 \hat{i}$	 ω angular frequency i momentary value t time i peak value I root-mean-square value
voltage u in alternating current circuit	momentary value: $u = \hat{u} \cdot \cos(\omega t + \phi_0)$ root-mean-square value: $U = \frac{1}{\sqrt{2}}\hat{u} \approx 0.7 \hat{u}$	
apparent power S	$S = U \cdot I$	
effective power P	$P = U \cdot I \cdot \cos \varphi$	$\cos \phi$ power factor ϕ lag angle
reactive power Q	$Q = U \cdot I \cdot \sin \phi$	ψ iag angle

Resistors in alternating current circuit

OHM's resistor R R = $\frac{U}{I}$	resistance of inductivity X_L $X_L = \frac{U}{I}$	resistance of capacitor X_C $X_C = \frac{U}{I}$
for a metallic conductor under the condition ϑ = constant, apply to:	for a coil, apply to:	for a capacitor, apply to:
$R = \frac{\rho \cdot l}{A}$	$X_L = \omega \cdot L$	$X_{C} = \frac{1}{\omega \cdot C}$
		u,i t u,i t

Transformation

voltage transformation for an transformer without losses	under the condition $I_2 \rightarrow 0$ (no-load), apply to: $\frac{U_1}{U_2} = \frac{N_1}{N_2}$	$A I_1 V U_1 N_1$
current transformation for an transformer without losses	under the condition $I_2 \rightarrow \infty$ (short), apply to: $\frac{I_1}{I_2} = \frac{N_2}{N_1}$	
transformation ratio ü	$\ddot{u} = \frac{N_1}{N_2}$	U voltage
power transformation	$\begin{split} P_1 &= P_2 + P_V \\ U_1 \cdot I_1 \cdot \cos \varphi_1 &= U_2 \cdot I_2 \cdot \cos \varphi_2 + P_V \\ \text{under the conditions of heavy load,} \\ \text{without losses and } \varphi_1 &= \varphi_2 \text{ apply to:} \\ U_1 \cdot I_1 &= U_2 \cdot I_2 \end{split}$	I current N number of windings P power P_v power loss ϕ lag angle between current and voltage
effectiveness η of an transformer	$\eta = \frac{P_{out}}{P_{in}}$	P _{out} power output P _{in} power input

Electromagnetic oscillation

THOMSON's oszillation law frequency f of an electrical oscillating circuit (without attenuation)	$T = 2\pi \cdot \sqrt{L \cdot C}$ under the condition of a free oscillation without attenuation (R=0), apply to: $f = \frac{1}{2\pi\sqrt{L \cdot C}}$	T period L inductivity C capacity
natural frequency f of an electrical oscillating circuit (with attenuation)	under the condition of a free oscillation, apply to: $f = \frac{1}{2\pi} \sqrt{\frac{1}{L \cdot C} - \frac{R^2}{L^2}}$	R OHM's resistor L inductivity C capacity C R
damping coefficient δ	$\delta = \frac{R}{2L}$	$f \qquad natural frequency \\ f_e \qquad exciter frequency$
resonance condition	f = f _e	

Characteristics and units

characteristik	symbol	unit		Conversion b units	etween the
damping coefficient	δ	per second	s ⁻¹	$1s^{-1}$	$= 60 \text{ min}^{-1}$
work	W, A	joule newtonmeter watt-second kilowatt-hour	J N \cdot m W \cdot s kW \cdot h	1 J 1 kW · h	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$ $= 1 \text{ N} \cdot \text{m}$ $= 1 \text{ W} \cdot \text{s}$ $= 3.6 \cdot 10^6 \text{ W} \cdot \text{s}$
illuminance	Е	lux	lx	1 lx	$= 1 \operatorname{lm} \cdot \operatorname{m}^{-2}$
acceleration	a, g	meter per square-second	$\mathbf{m} \cdot \mathbf{s}^{-2}$	$1 \text{ m} \cdot \text{s}^{-2}$	$= 1 \mathrm{N} \cdot \mathrm{kg}^{-1}$
reactive power	Q	voltampere reactive	VAr	1 VAr	= 1 var
density (of aggregate)	ρ	kilogramme per cubic meter gramme per cubic centimeter	$kg \cdot m^{-3}$ $g \cdot cm^{-3}$	$1 \text{ kg} \cdot \text{m}^{-3}$ $1 \text{ g} \cdot \text{cm}^{-3}$	$= 10^{-3} g \cdot cm^{-3}$ = 10 ³ kg \cdot m^{-3}
torque	М	newtonmeter	$N \cdot m$	$1 \text{ N} \cdot \text{m}$	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$
speed (rate of revolutions)	n	per second	s ⁻¹	1 s ⁻¹	$= 60 \text{ min}^{-1}$
magnetomotive force	Θ	ampere	А		
breakdown strength	E _d	volt per meter	$V \cdot m^{-1}$		
energy	W	joule newtonmeter watt-second electron volt	$J \\ N \cdot m \\ W \cdot s \\ eV$	1 J 1 eV	= $1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$ = $1 \text{ N} \cdot \text{m}$ = $1 \text{ W} \cdot \text{s}$ = $1,602 \cdot 10^{-19} \text{ J}$
gravitational acceleration	g	meter per square-second	$\mathbf{m} \cdot \mathbf{s}^{-1}$	$1 \text{ m} \cdot \text{s}^{-1}$	$= 1 \mathrm{N} \cdot \mathrm{kg}^{-1}$
electrical field strength	Е	volt per meter	$V \cdot m^{-1}$	$1 \text{ V} \cdot \text{m}^{-1}$	$= 1 \text{kg} \cdot \text{m} \cdot \text{s}^{-3} \cdot \text{V}^{-1}$
electrical flux	Ψ	coulomb	С	1 C	$= 1 \mathbf{A} \cdot \mathbf{s}$
magnetical flux	ф	weber	Wb	1 Wb	$= 1 V \cdot s$
magnetical flux density (magnetic induction)	В	tesla	Т	1 T	$= 1 \text{ Wb} \cdot \text{m}^{-2}$ = 1 V \cdots s \cdots \mathbf{m}^{-2} = 1 N \cdots \mathbf{m}^{-1} \cdots A^{-1}

characteristic	symbol	unit		Conversion l units	between the
frequency	f	hertz	Hz	1 Hz	$= 1 s^{-1}$
speed (propagation speed)	v c	meter per second kilometer per hour hitch	m · s ⁻¹ km · h ⁻¹ kn	1 m · s ⁻¹ 1 km · h ⁻¹ 1 kn	= 3,6 km \cdot h ⁻¹ = 0,28 m \cdot s ⁻¹ = 1 sm \cdot h ⁻¹ = 1852 m \cdot h ⁻¹
inductivity	L	henry	Н	1 H	$= 1 \text{ Wb} \cdot \text{A}^{-1}$ $= 1 \text{ m}^2 \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{A}^{-2}$
capacity	С	farad	F	1 F	$= 1 \mathbf{A} \cdot \mathbf{s} \cdot \mathbf{V}^{-1}$
force	F	newton	Ν	1 N	$= 1 \text{ kg} \cdot \text{m} \cdot \text{s}^{-2}$ $= 1 \text{ J} \cdot \text{m}^{-1}$
		kilopond	kp	1 kp	$= 1 \mathbf{J} \cdot \mathbf{m}$ $= 9,81 \mathbf{N}$
angular frequency	ω	per second	s ⁻¹	1 s ⁻¹	$= 60 \text{ min}^{-1}$
electrical charge	Q	coulomb	С	1 C	$= 1 \mathbf{A} \cdot \mathbf{s}$
power	Р	watt	W	1 W	$= 1 J \cdot s \cdot 1$ = 1 V · A = 1 kg · m ² · s ⁻³ = 1 N · m · s ⁻¹
power factor	cosφ		1		
electrical conductivity	γ	siemens per meter	$\mathbf{S} \cdot \mathbf{m}^{-1}$	$1 \mathrm{S} \cdot \mathrm{m}^{-1}$	$= 1 \ \Omega^{-1} \cdot m^{-1}$ $= 10^{-6} \text{m} \cdot \Omega^{-1} \cdot \text{mm}^{-2}$
electrical conductance	G	siemens	S	1 S	$=1 \ \Omega^{-1}$
light density	L	candela per square-meter	$cd \cdot m^{-2}$		
period (of oszillation)	Т	second	S	mentioned below (time)	
electical potential	φ	volt	V		
electrical voltage (potential difference)	U, u	volt	V	1 V	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{V}^{-1}$
magnetic voltage	V	ampere	А	1 A	$= 1 \mathbf{J} \cdot \mathbf{W} \mathbf{b}^{-1}$

characteristic	symbol	unit		Conver units	rsion between the
current	I, i	ampere	А	1 A	$= 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{V}^{-1}$
heat (heat quantity)	Q	joule	J	1 J	$= 1 \text{ N} \cdot \text{m}$ = 1 kg \cdot m ² \cdot s ⁻² = 1 W \cdot s
		kalorie	cal	1 cal	= 4,19 J
heat capacity	C _{th}	joule per kelvin	$\mathbf{J}\cdot\mathbf{K}^{-1}$		
heat conduction resistor	R _λ	kelvin per watt	$\mathbf{K}\cdot\mathbf{W}^{\text{-1}}$		
heat current	Φ_{th}	watt	W	1 W	$= 1 \mathbf{J} \cdot \mathbf{s}^{-1}$
OHM's resistor	R	ohm	Ω	1 Ω	$= 1 \mathbf{V} \cdot \mathbf{A}^{-1}$ $= 1 \mathbf{S}^{-1}$
resistance of inductivity	X _L	ohm	Ω	1 Ω	$= 1 \mathrm{V} \cdot \mathrm{A}^{-1}$
resistance of capacitor	X _C	ohm	Ω	1 Ω	$= 1 \mathrm{V} \cdot \mathrm{A}^{-1}$
magnetic resistor	R _m	per henry	H^{-1}	1 H ⁻¹	$= 1 \mathrm{A} \cdot \mathrm{Wb}^{-1}$
angle	α,β,	radiant	rad	1 rad	$=\frac{180^{\circ}}{\pi}\approx 57,296^{\circ}$
	γ,φ,σ	degree of angle	0	1°	$=\frac{\pi}{180}$ rad \approx 0,01745rad
angular acceleration	α	per squar-second	s ⁻²	1 s ⁻²	$= 3600 \cdot \min^{-2}$ $= 1 \operatorname{rad} \cdot \operatorname{s}^{-2}$
angular speed	ω	per second	s ⁻¹	1 s ⁻¹	$= 60 \text{ min}^{-1}$ $= 1 \text{ rad} \cdot \text{s}^{-1}$
efficiency	η		1 or %		
time (span, term)	t	second minute hour	s min h	1 min 1 h	= 60 s = 60 min = 2600 s
		day	d	1 d	= 3600 s = 24 h = 1440 min = 86400 s
		year	a	1 a	= 365 d or 366 d

Physical constants

constant	symbol	value and unit
permittivity (vacuum)	0 ³	8,854·10 ⁻¹² A·s/V·m
permeability (vacuum)	μ ₀	1,257·10 ⁻⁶ V·s/A·m
elementary charge	e	1,6021·10 ⁻¹⁹ C
speed of light (vacuum)	c ₀	2,99792·10 ⁸ m/s
electron mass (at rest)	m _e	9,109·10 ⁻²⁸ g
proton mass (at rest)	mp	1,6725·10 ⁻²⁴ g
neutron mass (at rest)	m _n	1,6748·10 ⁻²⁴ g
Bolzmann constant	k	1,381·10 ⁻²³ J/K
Planck constant	h	6,626·10 ⁻³⁴ J·s
gravitational constant	G	$6,673 \cdot 10^{-11} \text{ m}^3 / (\text{kg} \cdot \text{s}^2)$
gravitational acceleration	g	9,80665 m/s ²
absolute zero of thermodynamical temperature	т _о	-273,15 °C
Loschmidt number	L	$6,023 \cdot 10^{23}$ molecules/mol