

| Name:                                                                                                                                                                                                                                                        | 1 | 2 | 3 | 4                                                 | 5 | Σ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---------------------------------------------------|---|---|
| School:                                                                                                                                                                                                                                                      |   |   |   |                                                   |   |   |
| Tasks for the finale; 90 min; with formulary (English edition)<br>Please <b>use a separate sheet of paper</b> for each task.<br>Write your name and school on <b>each</b> of these papers.<br>At the end, fold your solution sheet according to the picture. |   |   |   | name<br>name<br>sks<br>skg<br>contion<br>Solution |   |   |

Task 1 (20 points)

For the electrical circuit from Figure 1 please calculate:

- a) The current  $I_x$  and voltage drop  $U_x$  for the resistor  $R_x$  when  $R_x = 5\Omega$ .
- b) The current I<sub>x</sub> and voltage drop U<sub>x</sub> on the resistor R<sub>x</sub> when R<sub>x</sub> =  $20\Omega$ .
- c) The value of  $R_x$  that gives the highest power P on the resistor  $R_x$ .



Figure 1

## Task 2 (20 points)

For the electrical circuit from Figure 2, please calculate:

- a) The currents  $I_{12}$ ,  $I_{23}$  and  $I_3$ .
- b) The voltage drop U on resistor R<sub>23</sub> and voltage drop U on the current source I.
- c) The powers P on the resistor  $R_{12}$  and  $R_{23}$  as well on the sources U and I.

(voltage source: U = 30V, current source I = 5A,  $I_1 = 10A$ ,  $I_2 = 5A$ )



Figure 2

## Task 3 (20 points)

The high-capacity capacitor (so called supercapacitor) can be charged over a voltage source U. The charging process starts after closing the switch K (see Figure 3). Before the time when the switch was closed, the capacitor was discharged. The capacitor C is assembled from two materials (conjugated polymers) with different relative permittivities ( $\epsilon_{r1}$ =11,29,  $\epsilon_{r2}$ =200) and thicknesses (d<sub>1</sub>=5·10<sup>-10</sup>m, d<sub>2</sub>=8,8549·10<sup>-9</sup> m). The total area S of single plate equals 1,0m<sup>2</sup>.



Figure 3

- a) Calculate the entire capacity C.
- b) Sketch a graph of the voltage across the capacitor C during the charging process.
- c) Calculate voltage U and charge amount Q of the capacitor for t=0.1s and t=10s.
- d) Calculate the voltage  $U_1$  and  $U_2$  on the two materials for t=0.1s and t=10s.
- e) Calculate the stored energy in the capacitor C after the charging process is finished.

Given is a homogenous magnetic field B=0,2T which is crossing the closed area with the angle of  $\beta$ =20°. The area is created by two conducting rails and two conducted metal rods. The electrical contact between rods and rails is ideal. The metal rods are moving along the rails at different speeds: v<sub>1</sub> = 0,2m/s and v<sub>2</sub> = 0,5m/s, see Figure 4.



Figure 4

a) Calculate the voltage  $U_{12}$  indicated by the voltage measurement device. The loop resistance of the measuring circuit is given by  $R_s$ , the internal resistance of the voltage meter is given by  $R_M$  ( $R_M >> R_s$ ).

## Task 5 (20 points)

A transformer with an input voltage of  $U_{in} = 230V$  was connected to a halogen lamp. The lamp had a power  $P_1 = 40W$  and a voltage  $U_1 = 12V$ .

When the lamp was replaced with an LED module, the measurement showed a voltage of  $U_2 = 15V$  and power  $P_2 = 6W$ .

Please assume an ideal transformer with a winding resistance  $R_T$  on its secondary side (series connection to the output voltage  $U_{out}$  of transformer) and make following calculations:

- a) Sketch the schematic for the described circuit and mark relevant voltages and currents.
- b) Calculate the inner resistance  $R_T$  of the output winding.
- c) Calculate the secondary current I in the halogen lamp and LED load.
- d) Calculate the effectivenesses  $\eta$  of the circuit for the halogen lamp and the LED module.
- e) Calculate the transformer ratio.