Ortskurven

Grundlage:

Darstellung komplexer Zeiger, z.B. Widerstandsoperator \underline{Z} . Komplexer Zeiger kann eine reelle veränderliche Größe, z.B. Frequenz enthalten, d.h. $\underline{Z}(\omega)$.

Definition:

Als Ortskurve bezeichnet man die Darstellung einer komplexen Netzwerksfunktion <u>A(p)</u>, die von einer reellen Veränderlichen p abhängt, in der komplexen Ebene.

In der Verbindungslinie der variablen Zeiger entsteht ein Kurvenzug (Ortskurve) in der komplexen Ebene.

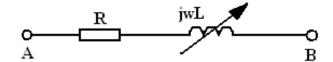
Allgemeine Zusammenhänge:

R-Form:
$$A(p) = \text{Re}\{A(p)\} \pm j \text{Im}\{A(p)\}$$

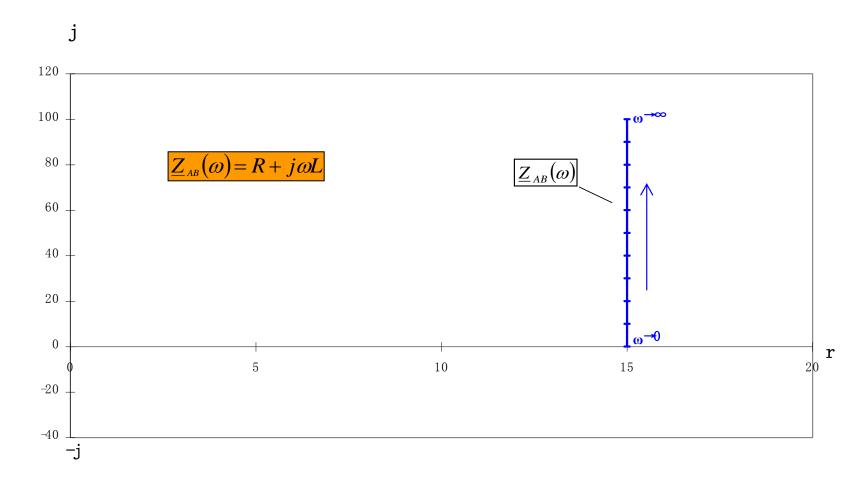
P-Form:
$$A(p) = A(p) \cdot e^{j\varphi(p)} = A(p) \angle \varphi(p)$$

Beispiel: Ortskurve für $Z(\omega)$ einer Reihenschaltung von R und L

R=15 Ω , L = 1mH, ω =0... ∞

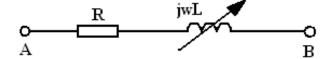


Darstellung in der R- Form



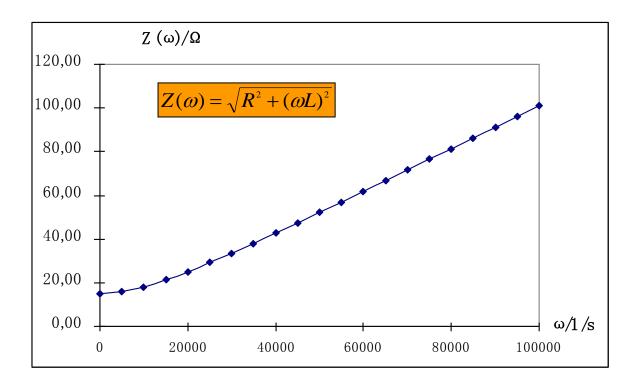
ET III - Kap. 1.2-F3

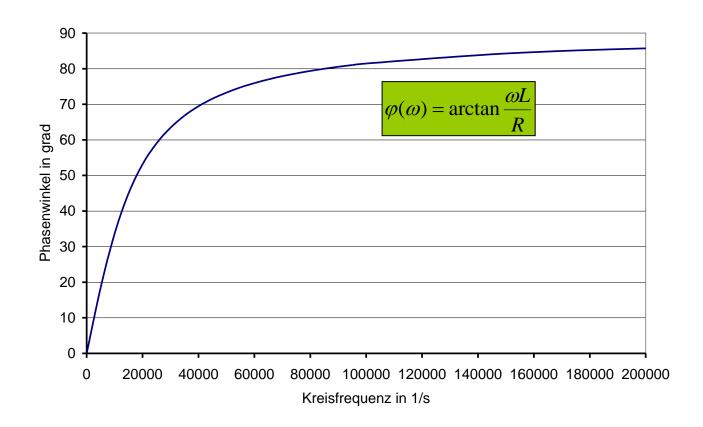
Beispiel: Ortskurve für $Z(\omega)$



R=15 Ω , L = 1mH, $\omega = 0...\infty$

Darstellung in P-Form: $\underline{Z}_{AB}(\omega) = Z(\omega) \angle \varphi(\omega)$





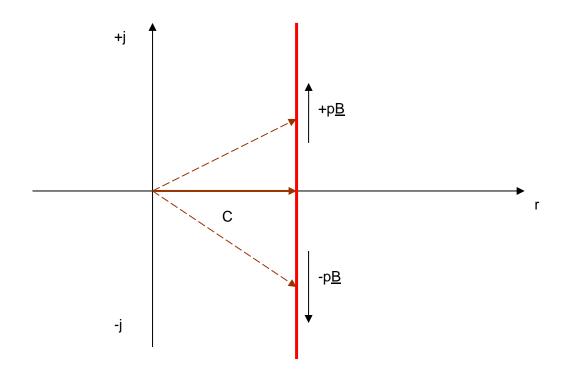
Wichtige Grundformen von Ortskurven

Geraden nicht durch den Nullpunkt

allgemein: $\underline{A(p)} = \underline{C} \pm p\underline{B}$

speziell: $\underline{A(p)} = C \pm jpB$ (Gerade in **zwei** Quadranten)

A(p) = C + jpB (Gerade in **einem** Quadranten)

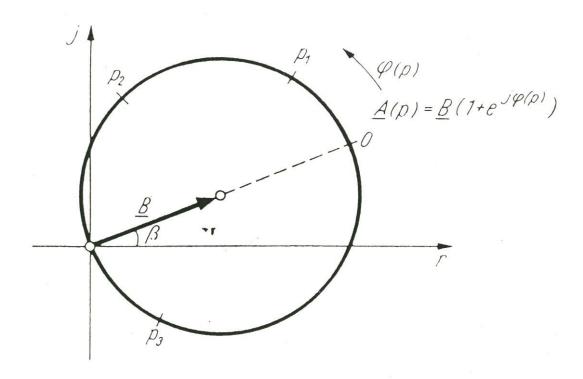


Beispiel (Gerade in zwei Quadranten): Reihenresonanzkreis

$$\underline{Z(\omega)} = R + j(\omega L - \frac{1}{\omega C})$$

Wichtige Grundformen von Ortskurven

Kreis durch den Mittelpunkt



spezieller Fall:

 \underline{B} – rein reelle Größe \to Kreis symmetrisch um reelle Achse Ortkurvenfunktion kann auch ein $\underline{Halbkreis}$ sein

Es gilt außerdem folgender Zusammenhang

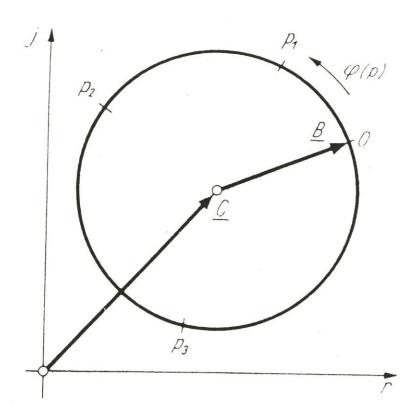
$$\underline{A(p)} = \underline{B}(1 + e^{j\varphi(p)}) = \frac{1}{\underline{C} + p\underline{B}}$$
 (Kreis entsteht durch Inversion einer Geradenfunktion)

Beispiel: Parallelresonanzkreis:

$$\frac{Z(\omega)}{\frac{1}{R} + j(\omega C - \frac{1}{\omega L})}$$

Wichtige Grundformen von Ortskurven

Kreis nicht durch den Mittelpunkt



$$\underline{A(p)} = \underline{C} + \underline{B} \cdot e^{j\varphi(p)} = \underline{D} + \frac{1}{\underline{C} + p\underline{H}}$$

C > B (Kreis schließt Mittelpunkt nicht ein);

 $C \le B$ (Kreis schließt Mittelpunkt ein)

spezieller Fall:

 \underline{C} - rein reelle Größe \rightarrow ein aus dem Mittelpunkt verschobener symmetrischer Kreis

Beispiel:

Parallelresonanzkreis mit vorgeschaltetem Widerstand R

$$\underline{Z(\omega)} = R_{1} + \frac{1}{\frac{1}{R_{2}} + j(\omega C - \frac{1}{\omega L})}$$

spezielle log. Darstellung von Ortskurven

Frequenzabhängigkeit komplexer Funktionen $\underline{A(\omega)}$ Bodediagramme

bezogene Frequenz
$$\frac{\omega}{\omega} = \Omega \rightarrow \underline{A} = f(\Omega)$$

Skalierung des Betrages A in Dezibel (dB)

Definitionen: Leistungsgrößen (P):
$$A[dB] = 10 \lg \frac{P_1}{P_2}$$

Feldgrößen (U, I): $A[dB] = 20 \lg \frac{U_1}{U_2}$

Beispiel: RC-Tiefpass mit Bezugsfrequenz $\omega_o = \frac{1}{RC}$

Übertragungsfunktion
$$\underline{\underline{H}}(\frac{\omega}{\omega_{o}}) = \underline{\underline{H}}(\Omega) = \frac{1}{1+j\Omega} = \frac{\underline{\underline{U}}_{a}}{\underline{\underline{U}}_{e}}$$

mit
$$H(\Omega) = \frac{1}{\sqrt{1+\Omega^2}}$$
 - Amplituden-Frequenzgang

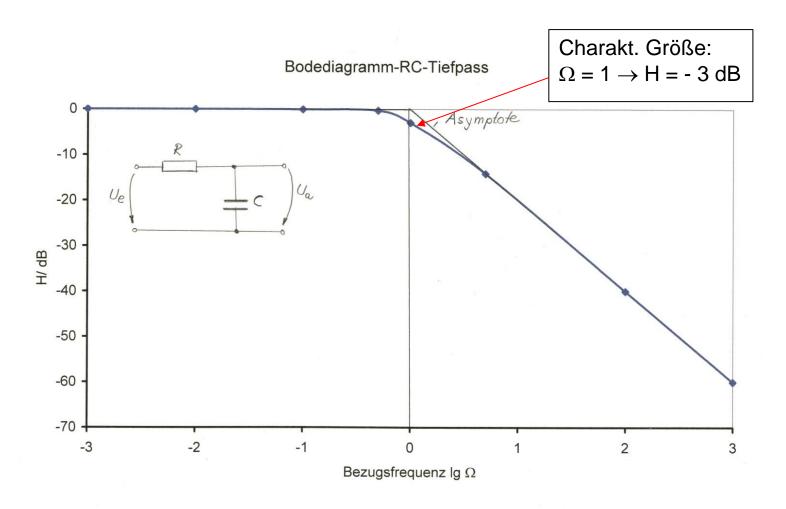
und $\varphi(\Omega) = -\arctan(\Omega)$ - Phasen-Frequenzgang

$$H(\Omega)[dB] = 20 \lg \frac{1}{\sqrt{1+\Omega^2}} = 20 \left[\lg 1 - \frac{1}{2} \lg (1+\Omega^2) \right]$$

$$\rightarrow H(\Omega)[dB] = -10\lg(1+\Omega^2)$$

für
$$\Omega > 10$$
 gilt $H(\Omega)[dB] \approx -10 \lg \Omega^2 = -20 \lg \Omega$ für $\Omega < 0,1$ gilt $H(\Omega)[dB] \approx 0$ im log. Maßstab kann das Bodediagramm durch Geraden (Asymptoten) angenähert werden.

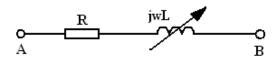
Bodediagramm - RC-Tiefpass $H(\Omega)[dB] = -10\lg(1+\Omega^2)$

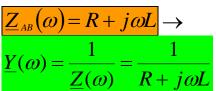


Inversion einer Ortskurve die nicht durch den Nullpunkt geht

 \rightarrow

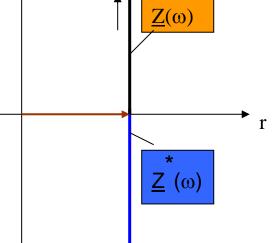
Beispiel: $\underline{Z}(\omega)$ einer Reihenschaltung von R und L invertieren in $\underline{Y}(\omega)$





Prinzipielle Vorgehensweise:

- ① Ortskurve $\underline{Z}(\omega)$ zeichnen
- ② konjugiert komplexe Ortskurve \underline{Z} (ω) zeichnen



Halbkreis im Quadranten von *
 <u>Z</u> (ω) durch den Mittelpunkt zeichnen

Wahl des Halbkreismittelpunktes M legt den Maßstab für $Y(\omega)$ fest

r