Magnetische Feldgrößen und Zusammenhänge

Feldgröße	Maßeinheit	Zusammenhänge
Magnetischer Fluss Φ	1Vs = 1 Wb	
Magnetische Flussdichte \vec{B}	1 Vs/m ² = 1 T	$ec{B} = rac{darPhi}{dA_{\perp}}$ $arPhi = \int ec{B} \cdot dec{A}$
Magnetische Feldstärke \overrightarrow{H}	1 A/m	$\vec{B} = \mu \cdot \vec{H}$ $\mu = \mu_0 \cdot \mu_r$
Durchflutung ⊕	1 A	$ \oint \vec{H} \cdot \vec{ds} = \Theta = \sum_{\nu=1}^{\nu=n} I_{\nu} $ Durchflutungsgesetz

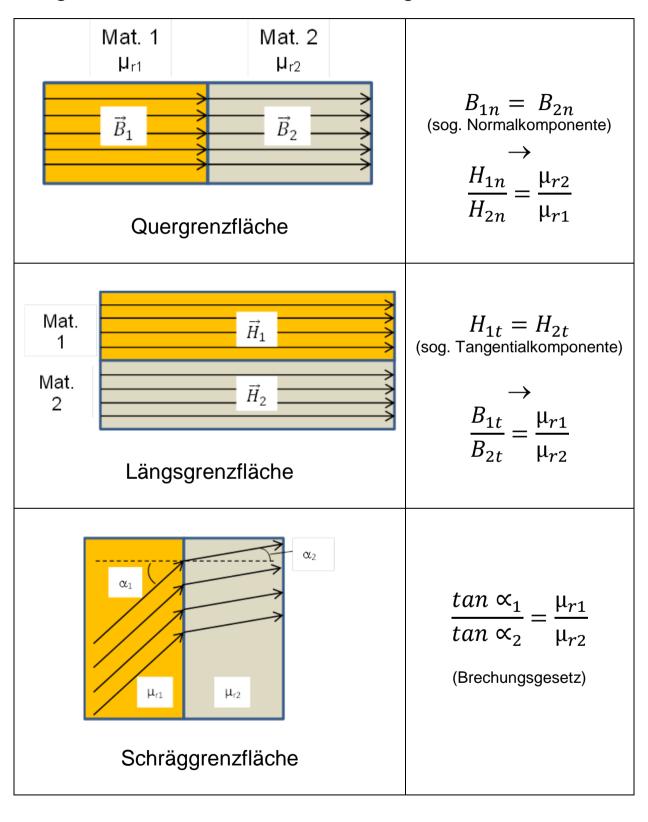
Anwendung des Durchflutungsgesetzes

$$\oint \vec{H} \cdot \vec{ds} = \Theta = \sum_{v=1}^{v=n} I_v$$

Merksatz

Durchflutungsgesetz gibt Beziehung zwischen den erfassten Strömen und dem Umlaufintegral wieder, nicht aber einen unmittelbaren Zusammenhang zur magnetischen Feldstärke selbst!

Berechnung der magnetischen Feldstärke ist aus Durchflutungsgesetz möglich, wenn \vec{H} über dem Integrationsweg $d\vec{s}$ oder zumindest über Teile von $d\vec{s}$ konstant ist!


Magnetkreise

Grundlagen zur Berechnung von Magnetkreisen

- Verhalten von Stoffen im Magnetfeld (Magnetisierungskennlinien)
- Wirkung von Grenzflächen (Quer-; Längs- und Schräggrenzflächen)
- ③ Nutzung von Analogiebeziehungen zwischen einem elektrischen Stromkreis und einem magnetischen Kreis

Magnetkreise - Grenzflächen im magnetischen Feld

Analogie zwischen magnetischem Kreis und elektrischem Stromkreis

homogener magnetischer Kreis	homogener elektrischer Kreis
Φ	I
V _m ; Θ	$U;U_q$
$R_{m} = \frac{V_{m}}{\Phi} = \frac{l_{m}}{\mu \cdot A}$	$R = \frac{U}{I} = \frac{l}{\kappa \cdot A}$
$H = \frac{V_m}{l}$	$E = \frac{U}{l}$
$B = \frac{\Phi}{A} = \mu \cdot H$	$S = \frac{I}{A} = \kappa \cdot E$

Berechnung von Magnetkreisen – Lösungswege

Variante ① - Annahme - μ_r – konstant

Bsp. Eisenkern (e) mit Luftspalt (l)

geg.: $\Theta = I \cdot N$; geometrische Abmessungen des Kerns und des Luftspalts

ges.: Φ ; B; H

Ansatz: $\Theta = V_{me} + V_{ml} = \Phi \cdot R_{me} + \Phi \cdot R_{ml}$

 \rightarrow

 $\Phi = \frac{I \cdot N}{R_{me} + R_{ml}}$

wobei

 $R_{me} = \frac{l_{me}}{\mu_0 \cdot \mu_r \cdot A}$

und

$$R_{ml} = \frac{l_l}{\mu_0 \cdot \mu_r \cdot A}$$

 $(l_{me}$ – mittlere Flusslinienlänge im Eisenkern; l_l – Luftspaltlänge; A – Querschnittsfläche des Eisenkerns bzw. des Luftspalts)

Eisenkern-Luftspalt bildet eine Quergrenzfläche →

$$B_{l} = \frac{\Phi}{A} = B_{e}$$

$$H_{l} = \frac{B_{l}}{\mu_{0}}$$

$$H_{e} = \frac{B_{e}}{\mu_{0}}$$

Berechnung von Magnetkreisen - Lösungswege

Variante ② - $\mu_r = f(H_e)$ (bzw. $B_e = f(H_e)$ - Magnetisierungskennlinie)

Bsp. Eisenkern (e) mit Luftspalt (l)

geg.: $\Theta = I \cdot N$; geometrische Abmessungen des Kerns und des

Luftspalts

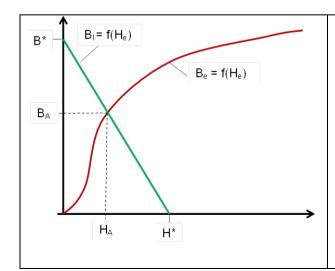
ges.: Φ ; B; H

Ansatz: $\Theta = V_{me} + V_{ml} = H_e \cdot l_{me} + H_l \cdot l_l$

 $(l_{me}$ – mittlere Flusslinienlänge im Eisenkern; l_l – Luftspaltlänge;

außerdem gilt:

$$H_l = \frac{B_l}{\mu_0}$$


und Eisenkern-Luftspalt bildet eine Quergrenzfläche →

$$B_{l} = B_{e}$$

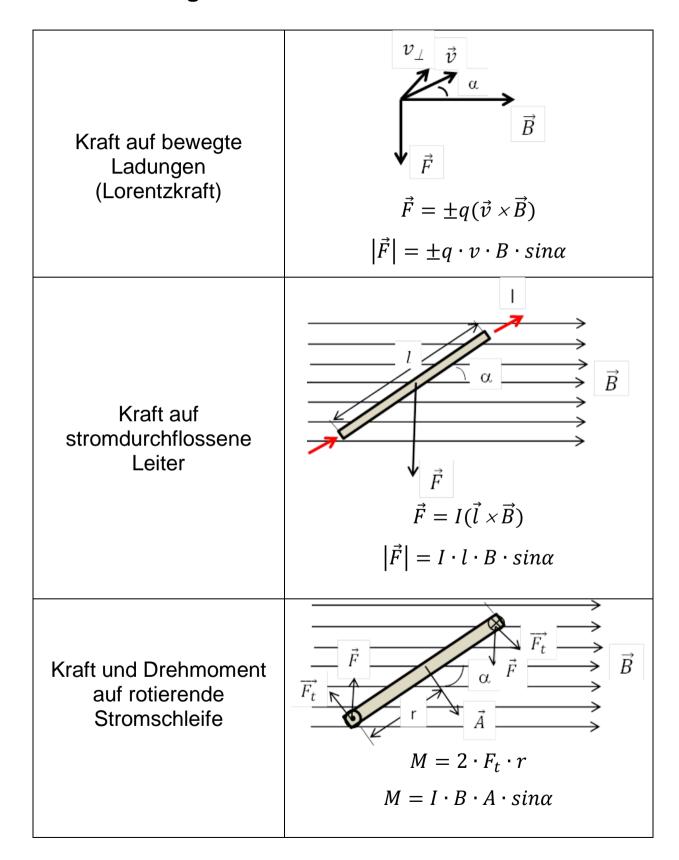
$$\Theta = H_{e} \cdot l_{me} + \frac{B_{l}}{\mu_{0}} \cdot l_{l}$$

$$\to$$

$$B_{l} = \frac{\mu_{0}}{l_{l}} \cdot (\Theta - H_{e} \cdot l_{me})$$

$$B_{l} = f(H_{e}) = \frac{\mu_{0}}{l_{l}} \cdot (\Theta - H_{e} \cdot l_{me})$$

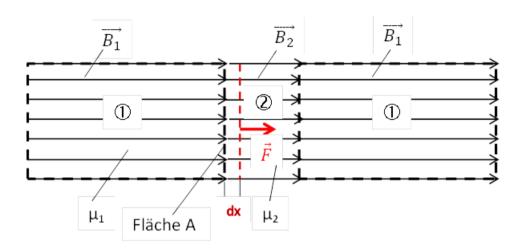
$$B_{l}^{*} = \frac{\mu_{0} \cdot \Theta}{l_{l}}$$


$$H^* = \frac{\Theta}{l_{me}}$$

 B_A ; H_A – grafisch ermitteln $\to \Phi$

Gespeicherte Energie im magnetischen Feld

$\begin{array}{c} \delta A \\ \delta A \end{array}$	$\delta W_{m} = d\Phi \cdot V_{m}$ \downarrow $\delta W_{m} = dB \cdot \delta A \cdot dH \cdot \delta l$ \downarrow $\frac{\delta W_{m}}{\delta V} = H \cdot dB$ \downarrow
magnetische Energiedichte allgemein	$\int\limits_{V} \frac{\delta W_m}{\delta V} = \int H dB$
magnetische Energiedichte im homogenen Magnetfeld	$\frac{W_m}{V} = w_m = \int H dB$
magnetische Energiedichte im homogenen Magnetfeld bei μ = konst.	$w_{m} = \int_{0}^{B_{1}} H dB = \frac{B_{1}^{2}}{2\mu}$ $= \frac{H_{1} \cdot B_{1}}{2}$
magnetische Energiedichte im homogenen Magnetfeld bei µ ≠ konst. (Magnetisierungskennlinie)	$w_m = \int\limits_0^{B_1} HdB$ grafische Integration


Kräfte im magnetischen Feld

Kräfte im magnetischen Feld (2)

Kraft auf Grenzflächen

Quergrenzfläche

$$\frac{F}{A} = \frac{B^2}{2} \left(\frac{1}{\mu_2} - \frac{1}{\mu_1} \right)$$

Anwendung auf Eisenkreis (①) mit Luftspalt (②)

wobei : $\mu_1 >> \mu_2 \rightarrow$

$$\frac{F}{A} \approx \frac{B^2}{2 \cdot \mu_2} = \frac{B \cdot H_l}{2} = \frac{dW_{ml}}{dV}$$

Kraft/Fläche – entspricht magnetischer Energiedichte im Luftspalt