
Copyright is held by the author/owner(s).
ELS’2011 TUHH, Hamburg, Germany.
[European Lisp Symposium].

Bites of Lists - Mapping and Filtering Sublists

Kurt Nørmark
Department of Computer Science

Aalborg University
Denmark

normark@cs.aau.dk

ABSTRACT
The idea of applying map and filter functions on consecutive
sublists instead of on individual list elements is discussed and
developed in this paper. A non-empty, consecutive sublist
is called a bite. Both map and filter functions accept a
function parameter - a bite function - which is responsible
for returning a prefix bite of a list. We develop families of
bite functions via a collection of higher-order bite generators.
On top of the bite generators, a number of bite mapping
and bite filtering functions are introduced. We illustrate the
usefulness of bite mapping and filtering via examples drawn
from a functional programming library that processes music,
represented as Standard MIDI Files.

Categories and Subject Descriptors
D.1.1 [Applicative (Functional) Programming]: Lisp,
Scheme; E.1 [Data structures]: Lists; H.5.5 [Sound and
Music Computing]: Systems

1. INTRODUCTION
Mapping and filtering represent some of the classical higher-
order functions on lists, together with similar functions such
as reduction functions. Both the classical mapping and fil-
tering functions deal with individual elements of a list. A
mapping function applies a function to each individual ele-
ment of the list, and it returns the list of these applications.
A filter function selects those elements on which a predi-
cate is fulfilled. The predicate of a filtering function is also
applied on each individual element of the list.

The idea described in this paper is to apply mapping and
filtering on sublists of a list. The Common Lisp function
maplist, which applies a given function on successive tails
of a list, is a simple example of a mapping function that
belongs to this genre. In this context, a sublist of a list L=
(e1 e2 ... en) is a non-empty consecutive part of L, (ei ...
ej), where i ≤ j, i ≥ 1, and j ≤ n. It is easy to see that for
a list L of length n, there are (n+ 1)(n/2) such sublists.

Although it is possible, and maybe even useful, to map and
filter all possible sublists of a list, most of the work in this
paper will deal with map and filter functions that process
mutually disjoint sublists that partition the list. In this
context, a disjoint partitioning of a list L = (e1 e2 ... en)
is formed by L1 = (ei1 ... ej1), L2 = (ei2 ... ej2), ..., Lk =
(eik ... ejk ) where k ≤ n, i1 = 1, jk = n, jm = im+1 for
1 ≤ m ≤ k − 1. In order to simplify the vocabulary, each
non-empty sublist in a disjoint partitioning will be called a
bite. The bites L1 ... Lk of a list L = (e1 e2 ... en) are all
non-empty, and when they are appended the result is L.

The development on bites of lists has been motivated by our
previous work on MIDI music programming in Scheme [9].
A piece of music, represented as a MIDI file, consists of a
list of discrete MIDI events. The MIDI list of a typical song
consists of thousands of such events. When a list of MIDI
events is captured from a MIDI instrument, the first job
is typically to impose structure on the list. The structure
will be a music-related division consisting of units, such as
bars/measures, song lines, song verses, or chord sequences.
The capturing of music related structures in a list of MIDI
events was the starting point of the work described in this
paper.

In addition to the music-related application area, we will
also mention an example of another area in which mapping
and filtering of sublists may be useful. Imagine a long list
of time-stamped meteorological data objects that describes
the weather conditions during a long period of time. Each
object may contain information about temperature, air pres-
sure, rain since last reading, and other similar data. In or-
der to extract characteristics about weather conditions at
a more coarse-grained level, it may be relevant to partition
the list in sublists. These sublists may, for instance, cor-
respond to regular periods of time (days, weeks, month, or
years). Sublists with monotone progressions of the air pres-
sure or temperature could also be of interest. Both kinds of
sublists can be produced by the functions described in this
paper. Systematic search for (maybe overlapping) sublists
with certain more detailed properties is also an area which
is supported by functions in this work.

In Section 3 we present the higher-order mapping and filter-
ing functions, each of which rely on a bite function. When
applied to a list, a bite function returns a prefix of the
list. Prior to the discussion of the mapping and filtering
functions, we will in Section 2 introduce a collection of bite
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function generators. It turns out that these generated “bit-
ing functions” are the crucial part of the game. In Section 4
we discuss the bite generators relative to the motivating ex-
ample of this work (introducing structure in a list of MIDI
events). Section 5 contains a description of related work.
Section 6 presents our conclusions.

The mapping and filtering of sublists has been developed in
the context of the R5RS Scheme programming language [5].
Even though Scheme is dynamically typed, we will often de-
scribe the functions by means of statically typed signatures.

2. BITE GENERATORS
A bite function b is a function which takes a list of elements
as parameter, and returns a non-empty prefix of that list.
More precisely, a bite function returns a non-empty list pre-
fix when applied on a non-empty list. Thus, the signature of
a bite function b is List<E> → List<E> for some element
type E. Of convenience, and for generalization purposes, a
bite function return the empty list when applied on an empty
list.

It is usually straightforward to program a particular bite
function. In this section we will deal with families of similar
bite functions, as generated by higher-order bite generating
functions.

A particularly simple bite generator is (bite-of-length n),
which returns a function that takes a bite of length n:

((bite-of-length 3) ’(a b c d e)) => (a b c)

If a function, returned by (bite-of-length n) is applied on
a list with fewer than n elements it just returns that list.

Another simple bite generator bite-while-element is con-
trolled by an element predicate passed as parameter to the
function. When applied on a list, the generated bite function
returns the longest prefix of the list whose elements, indi-
vidually, satisfy the element predicate. Thus, for instance,

((bite-while-element even?) ’(2 6 7 4)) => (2 6)

Elements which violate the element predicate are called sen-
tinels. The requirement that successive bites of a list append-
accumulate to the original list makes it necessary, one way
or another, to include the sentinel elements in the list. Each
bite includes at most one sentinel. Sentinels can either start
a bite, terminate a bite, or occur alone as singleton bites.
These variations are controlled by an optional keyword pa-
rameter1, sentinel, of the bite generator. The default value
of sentinel is "last". However, the example given above
assumes that sentinel is "first".

1Keyword parameters are simulated in a way that corre-
sponds to how LAML [8] handles XML attributes in Scheme
functions. Following the conventions of LAML, an attribute
name is a symbol and the attribute value must belong to an-
other type (typically a string). In the context of the function
bite-while-element, this explains why the sentinel role is
a string (and not a symbol).

Figure 1: In the list (e1 ... ei ei+1 ...) the elements e1, ...,
ei have been accumulated with use of the function acc and
the initial value iv. The current element ei+1 is passed to
the predicate pred together with the accumulated value.

The following examples illustrate the role of the sentinel

parameter:

((bite-while-element even? ’sentinel "first")

’(1 2 6 7 4)) => (1 2 6)

((bite-while-element even? ’sentinel "alone")

’(1 2 6 7 4)) => (1)

((bite-while-element even? ’sentinel "last")

’(1 2 6 7 4)) => (1)

((bite-while-element even? ’sentinel "last")

’(2 6 7 4)) => (2 6 7)

The remaining bite generators construct bites based on prop-
erties that do not (alone) pertain to individual elements.
Functions generated by the expression

(bite-while-element-with-accumulation

pred accumulator init-val)

accumulate the elements of the bite. The accumulated value
and the ’the current list element’ are handed to a predicate
pred, which controls the extent of the bite. For the sake
of the accumulation, a binary accumulator acc is needed
together with an initial ‘getting started value’ iv. This is
illustrated in Figure 1. The generated function returns the
longest bite in which each element, together with the accu-
mulation of the “previous elements”, fulfill the predicate.

Here follows an example that accumulates elements in an
integer list by simple + accumulation (using 0 as the initial
value). In the example, the predicate states that we are
interested in the longest prefix of the list that, successively,
has a sum of 5 or below.

((bite-while-element-with-accumulation

(lambda (e s) (<= (+ e s) 5))

(lambda (s e) (+ s e))

0)

’(1 2 1 1 -1 2 3 4)) => (1 2 1 1 -1)
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As above, we assume in the general case that the element
type of the list is E. The predicate (which is the first pa-
rameter shown above) has the signature E × S→ bool. The
accumulator (the second parameter) has the signature S ×
E→ S. In the predicate, the S-valued parameter is the accu-
mulation of all values before the E-valued ‘current element’.

A function generated by bite-while-element-with-accumu-

lation always ’consumes’ the first element in the list with-
out passing it to the predicate. As a consequence, the first
element in the bite does not necessarily fulfill the predi-
cate. Without this special case, bite functions generated
by bite-while-element-with-accumulation, will be able
to return empty bites. Recall from Section 1 that empty
bites are illegal (unless taken from an empty list). Succes-
sive “biting” with bite a function generated by bite-while-

-element-with-accumulation is illustrated in Section 3.

A function generated by (bite-while-compare er) returns
the longest bite where elements, pair-wise, fulfill a binary
element relation defined by the function er. Here is an ex-
ample where we identify the longest increasing prefix of a
list:

((bite-while-compare <=)

’(2 6 6 7 1 2)) => (2 6 6 7)

It comes out naturally that bite functions, generated by use
of bite-while-compare, return non-empty bites when ap-
plied on non-empty input. It should be noticed that the
effect of bite-while-compare can be achieved by a (rather
clumsy) application of bite-while-element-with-accum-

ulation with an accumulator that just returns the previous
elements.

The last bite generation function that we will discuss in this
section is bite-while-monotone, which can be seen as a
convenient generalization of bite-while-compare. Based
on an element comparator, which follows the C conventions
of comparison functions2, a function generated by bite-

-while-monotone returns the longest monotone bite of the
list. More precise, the function returns the longest list prefix
where successive pairs of elements have the same value when
passed to the comparator function. Here is an example:

((bite-while-monotone (make-comparator < >))

’(1 2 3 2 1 0 4 4 4 1 2 1))

=> (1 2 3)

The element comparator is constructed by make-comparator,
which as input receives the greater than and the less than
functions. Five “successive bitings” with the function in the
example produces the bites (1 2 3), (2 1 0), (4 4 4), (1
2), and (1) respectively. Such “successive biting” can easily
be realized with use of map-bites which will be introduced
in the following section.

As explained above, all generated bite functions have the
signature List<E> → List<E> for some element type E.
2In the scope of this paper (compare-to x y) is -1 if x is
less than y, 0 if x is equal to y, and 1 if x is greater than y.

In some situations it is useful to know where a given bite
belongs relative to neighboring bites. For this reason, all
generated bite functions accept a second integer parameter
that informs the bite function about the current bite number,
in contexts where bites are generated successively (as intro-
duced in Section 1). In Scheme, this is handled by requiring
that all generated bite functions have a rest parameter, like
in (lambda (lst . rest) ...), where the first element in
rest will be bound to the current bite number. Examples
are provided when we discuss the bite mapping and bite
filtering functions in Section 3.

Finally, most bite generators accept an optional predicate,
called a noise predicate. Elements that fulfill the noise pred-
icate are passed unconditionally to the resulting bite. Noise
elements are not counted (in the context of bite-of-length),
are not taken into consideration by the predicate of bite-
-while-element, and are not accumulated by bite-while-

-element-with-accumulation. In Section 4 we will see prac-
tical examples that reveal the usefulness of noise predicates.

3. BITE MAPPING AND BITE FILTERING
We will now discuss a number of higher-order functions that
successively applies a bite function to a list, and which pro-
cesses the resulting bites in various ways. As already men-
tioned, some bite functions can be generated by one of the
functions described in Section 2. More specialized bite func-
tions will have to be explicitly programmed relative to the
specific needs.

3.1 The map-bites function
The function map-bites is the natural counterpart to the
classic map function in both Scheme and Common Lisp.
map-bites applies a bite transformation function on each
bite of a list (relative to repeated application of a given bite
function):

(map-bites bite-function bite-transf lst)

If applied on a bite of type List<E>, the transformation
function bite-transf is supposed to return another list of
type List<F>. The lists produced by the bite transforma-
tion function are spliced (append accumulated) by map-bites.
In that way (map-bites bf id lst), where id is the iden-
tity function, is equal to lst for any bite function bf.

Let us first use the Scheme function list as the bite trans-
formation function, with the purpose of explicitly identifying
the bites successively delivered by a given biting function.
This particular transformation illustrate the typical need of
somehow revealing/representing the individual bites in the
results returned by the mapping or filtering functions.

(map-bites (bite-while-element number?) list

’(1 -1 1 a 3 4 b 6 1 2 3)) =>

((1 -1 1 a) (3 4 b) (6 1 2 3))

The bites taken by (bite-while-element number?) places
a sentinel value as the last element of the bite (because,
as explained in Section 2, the default value of the optional
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sentinel parameter is "last"). In the example, a sentinel
element is an element which is not a number. If the inten-
tion is to get rid of sentinel elements after applying the bite
function, it may be better to isolate them using the "alone"

sentinel option:

(map-bites

(bite-while-element number? ’sentinel "alone")

list

’(1 -1 1 a b c 3 4 b 6 1 2 3)) =>

((1 -1 1) (a) (b) (c) (3 4) (b) (6 1 2 3))

In this example it is straightforward to get rid of singular,
non-numeric elements from this list by ordinary (element)
filtering.

Let us also illustrate map-bites relative to other bite func-
tions, as produced by the generators discussed in Section
2.

(define sum-at-most-5

(bite-while-element-with-accumulation

(lambda (e v) (<= (+ e v) 5))

(lambda (v e) (+ v e))

0))

(map-bites sum-at-most-5 list

’(1 2 1 1 -1 7 -1 3 1 4)) =>

((1 2 1 1 -1) (7) (-1 3 1) (4))

(define increasing

(bite-while-compare <=))

(map-bites increasing list

’(2 6 6 7 5 1 -3 1 8 9)) =>

((2 6 6 7) (5) (1) (-3 1 8 9))

(define monotone-ints

(bite-while-monotone

(make-comparator <= >=)))

(map-bites monotone-ints list

’(2 6 6 7 5 1 -3 1 8 9)) =>

((2 6 6 7) (5 1 -3) (1 8 9))

3.2 The bite filtering functions
Bite filtering, as provided by the function filter-bites, has
the following parameter profile:

(filter-bites bite-function bite-predicate lst)

After generation of each bite with use of bite-function the
bite is passed to a bite-predicate, which decides if the bite
should be part of the output list. The bites accepted by the
bite predicate are spliced together, in the same way as in
map-bites. The non-accepted bites are discarded. The fol-
lowing example, which works on bites of length 3 (whenever
possible), filters the bites that start with a number:

(filter-bites

(bite-of-length 3)

(lambda (bite) (number? (car bite)))

’(1 -1 1 a b c 3 4 b 6 1 2 3)) =>

(1 -1 1 3 4 b 6 1 2 3)

The following bites are taken out of the sample list: (1 -1

1), (a b c), (3 4 b), (6 1 2), and (3). The predicate
only discards (a b c), because the first element of this bite
is not a number. The remaining bites are spliced together
and returned by filter-bites.

It is often convenient to apply a bite transformation function
bite-transf just after filtering with bite-predicate:

(filter-map-bites bite-function bite-predicate

bite-transf lst)

This function first chunks the list lst with use of bite-func-
tion. Each resulting bite is passed to bite-predicate, and
the accepted bites are transformed by bite-transf (to a
value which must be a list). The lists returned by the bite
transformations are finally spliced together.

In simple cases we can (just as illustrated for map-bites

above) use the bite transformation function list for identi-
fication of the bites that have survived the filtering.

(filter-map-bites

(bite-of-length 3)

(lambda (bite) (number? (car bite)))

list

’(1 -1 1 a b c 3 4 b 6 1 2 3)) =>

((1 -1 1) (3 4 b) (6 1 2) (3))

The result of this filtering is similar to the previous example,
but the bite structure is preserved in the output.

The implementations of map-bites and filter-bites are
simple and straightforward. The function map-bites is im-
plemented as a tail recursive function that collects the trans-
formed bites in a list, which is reversed and append-accumu-
lated as the very last step. The function filter-bites is
implemented in a similar way.

In general, the bite functions are implemented by means of
tail recursive functions which collect the bite elements in a
parameter, which is reversed before a bite is returned. Be-
cause a bite is prefix of a list, say of length n, we need to
allocate n new cons-cells for it. (This would not have been
necessary if we worked on suffixes of a list, like the Common
Lisp function maplist). It is crucial for our approach that
the bites are materialized as separate lists, but it is also quite
expensive to allocate (and deallocate) memory for these in-
termediate structures.

3.3 The step-and-map-bites function
We will now discuss step-and-map-bites which is a slightly
more complex variant of filter-map-bites. The parame-
ter lists of step-and-map-bites and filter-map-bites are
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basically the same. filter-bites and filter-map-bites

both discard a whole bite b, if b is not accepted by the bite
predicate. Let us assume that the length of a bite b is n. It
b is accepted by the bite predicate in step-and-map-bites

it is transformed just like it is done by filter-map-bites,
and we step n elements forward from the beginning of the
current bite before we take the next bite of the list. If b is
not accepted by bite-predicate, we do not discard n ele-
ments when using step-and-map-bites. Instead, the predi-
cate gives back a step length s (typically 1), and the next bite
taken into consideration starts s elements ahead. Elements
stepped over are not discarded (as in filtering functions).
Such elements are passed directly and untransformed to the
output.

In the setup just described, the value returned by the bite
predicate has two purposes: (1) The accepting purpose (a
boolean view of the value) and (2) the stepping length pur-
pose (an integer view of the value). Therefore the bite pred-
icate of step-and-map-bites returns an integer. A positive
integer p is considered as an accepting value, and p is the
stepping length. The number p is typically (but not neces-
sarily) the length of the most recent bite. A negative integer
n is a non-accepting value, and -n is the stepping length. In
most practical cases n is -1.

The execution of the functions map-bites, filter-bites,
and filter-map-bites are linear in the length of the input
list, if the bite functions, together with the other function
parameters, are linear in their processing of the prefixes of
the list. In contrast, step-and-map-bites is able to regress
the “biting process”, hereby processing the same elements of
the input list several times.

As another difference, map-bites and filter-bites process
disjoint “bite” partitionings of a list, as described in Section
1. In contrast, and as discussed above, step-and-map-bites
processes selected disjoint3 bites that may be separated by
list elements, which are unaffected by the mapping process.
We may consider these “in between elements” as interme-
diate bites. Using this interpretation, the processing done
by step-and-map-bites can be thought of as operating on
disjoint bites (those selected together with the intermediate
bites) that append-accumulate to the original list.

In the following example, the biting function takes bites of
length 3 out of a list of integers. A bite is accepted if the
sum of the elements of the bite is even. If the bite is not
accepted, we take a single step forward, and recurses from
there.

(step-and-map-bites

(bite-of-length 3)

(lambda (bite) (if (even? (apply + bite))

(length bite)

-1))

list

3Disjointness is only assured if the stepping length of the
integer-valued bite predicate returns a positive number
which is not less than the length of the accepted bite. The
last part of Section 3.3 shows an example where the stepping
length is 1. This leads to processing of overlapping bites.

’(0 1 2 1 2 3 4 0 -2 1 3 4 5)) =>

(0 (1 2 1) 2 3 (4 0 -2) (1 3 4) 5)

The first bite of length 3 is (0 1 2), and its element sum is
odd. The stepping mechanism causes step-and-map-bites

to output the element 0, and consider the next bite (1 2 1).
The element sum of (1 2 1) is even, and it is accepted and
transformed (with the function list). We therefore step
3 elements forward. The following (overlapping) bites (2

3 4) and (3 4 0) are not accepted, because their element
sums are non-even. The elements 2 and 3 are consequently
transferred the output list. The next bite of length 3, which
is (4 0 -2), is accepted, etc.

If the “predicate” of step-and-map-bites (the second pa-
rameter) returns a positive integer smaller than the length
of the bite, overlapping bites will be processed. The follow-
ing variant of the expression shown above returns all possible
consecutive triples of a list with even element sum:

(filter list?

(step-and-map-bites

(bite-of-length 3)

(lambda (bite) (if (even? (apply + bite))

1 ; <-- The difference

-1))

list

’(0 1 2 1 2 3 4 0 -2 1 3 4 5))) =>

((1 2 1) (1 2 3) (4 0 -2) (-2 1 3)

(1 3 4) (3 4 5))

At the outer level of the expression we disregard all non-list
elements with use of the ordinary element filter function.

4. MAPPING AND FILTERING BITES OF
MIDI SEQUENCES

As already mentioned in Section 1, the development on bites
of lists was motivated by our work on MIDI programming in
Scheme. In this section we discuss a number of MIDI pro-
gramming problems and solutions facilitated by bite map-
ping and filtering. First, however, we give some background
on our approach to MIDI programming in Scheme.

MIDI is a protocol for exchange of music-related events. The
MIDI protocol emphasizes sequences of discrete music events
(such as NoteOn and NoteOff events) in contrast to an audio
representation of the music. A piece of music can be repre-
sented as a Standard MIDI file in a compact binary represen-
tation. A Standard MIDI file4 is basically a long sequence
of MIDI events. We have developed a Scheme representa-
tion of a Standard MIDI file, which relies on LAML5 for
representation of MIDI sequences. We call it MIDI LAML
[9].

In MIDI LAML we work on long lists of MIDI events (typi-
cally several thousands events). The main goal of our system
4A Standard MIDI file of format 0 is a sequence of MIDI
events. Format 1 and format 2 midi files are structured in
tracks and songs respectively.
5LAML [8] represents our approach and suite of tools to deal
with XML documents in Scheme.
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Figure 2: A piano roll presentation of a few notes n1 .. n5 and their (horizontal) durations. The bite formed by the notes
n1 .. n4 is followed by a pause, because n5 starts after the absolute time Sound Frontier + Pause Length.

is to do useful work on music via functionally programmed
solutions - in contrast to interactive operations in a MIDI
sequencer environment. Instead of always working on indi-
vidual MIDI events it is often attractive to work on selected,
consecutive sublists of MIDI sequences. Such sublists are
bites of MIDI events.

When a list of MIDI events is captured from a MIDI instru-
ment, the first job is typically to impose structure on the
list. The structure will consist of music-related divisions of
the MIDI list. Many such structures can be captured by ap-
plication of bite mapping. We will now describe how it can
be done by use of the functions from Section 2 and 3. It is
recommended that the reader consults the detailed program
listings in the appendix while reading the subsections below.

4.1 Bars
For temporally strict music6 the bar/measure structure can
be captured by mapping a next-bar bite function over the
music using map-bites. A relevant bite function can be gen-
erated by means of either bite-while-element-with-accu-
mulation (for delta timed MIDI sequences) or bite-while-
-element (for absolutely timed MIDI sequences). A simple
transformation of map-bites is to insert a bar division meta
message into the stream of notes in order to emphasize the
bar structure of the music. The function map-bars, as out-
lined in Appendix A.1, wraps these pieces together.

As a more interesting application, it is possible via the trans-
formation function of map-bites to affect the characteristics
of selected bars, for instance the tempo, the velocity (play-
ing strength), or the left/right panning. In the last part of
Appendix A.1 we show how to gradually slide the tempo of
every fourth bar of a song with use of map-bars, which is
programmed on top of map-bites.

4.2 Pauses
A song is often composed by parts separated by pauses. A
pause is a period of time pl during which no NoteOn messages

6Music played by metronome, or music captured from a
source which quantizes the start and duration of notes to
common note lengths, is here called temporally strict music.

appear. In addition, we will require that all previously acti-
vated notes have ended before entering the pause of length
pl.

It is obviously useful to identify pauses in a song, because it
will provide a natural top-level structure in many kinds of
music. We provide a function called map-paused-sections

which maps some function f on sections of MIDI message
that are separated by pauses. This function is implemented
in terms of map-bite, which in turn uses a bite function gen-
erated by bite-while-element-with-accumulation. Please
consult Appendix A.2 where the implementation of map-

-paused-sections is presented.

The use of the generated bite function is illustrated in Fig-
ure 2. Let us assume that we look for pauses of at least
pl time ticks. The accumulator keeps track of a point in
time called the sound frontier sf where all previous notes
have been ended. The predicate examines if the next note
starts at a time after sf + pl. If this is the case a pause has
been identified, and this ends the current bite of the MIDI
sequence.

The actual implementation of map-paused-sections, as it is
shown in Appendix A.2, uses a variant of map-bites called
map-n-bites, which passes the bite-number to the transfor-
mation function. With use of this variation, it is easy to
insert numbered markers into the MIDI sequence.

4.3 Sustain intervals
When playing a piano, one of the pedals is used to hold the
notes after they have been released on the keyboard. This
is called sustain. In a MIDI representation, sustain is dealt
with by particular ControlChange messages that represent
the level of the pedal. We are interested in identifying the
monotone sustain regions, such as R1, ..., R7 shown Figure
3. A single bite of the MIDI sequence can be identified
with a function generated by bite-while-monotone from
Section 2. When such a bite function is mapped over the
entire sequence of MIDI messages with map-bites, we can
conveniently process the regions shown in Figure 3.

We have programmed a function on top of these applica-
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Figure 3: Seven regions of MIDI events that represent ‘pedal down” and ‘pedal up’ intervals. Region 6 and 7 are both pedal
down intervals. The pedal moved quickly from a low value to a high value. It is not a requirement that monotone bites
alternate between being increasing and decreasing.

tions called map-sustain-intervals, which passes knowl-
edge about the monotonicity to the transformation function
of map-bites. (Please consult Appendix A.3 for details).
This can, for instance, be used for fastening the downward
pedal movements (in the regions R2, R4, R6, and R7 of
Figure 3), such that sustained notes rings out steeper or
earlier than in the original. Without use of a generated bite
function, and without use of map-bites, it would be a fairly
difficult task to program such a transformation (let alone the
effort of realizing the change interactively in a conventional
MIDI sequencer).

4.4 Chord identification
As the final example from the domain of MIDI music we will
discuss how to identify the chords in a piece music. Chord
recognition [12] is much more difficult to handle than the
other music related examples we have discussed above. In
the context of the work described in this paper, it is not the
ambition to come up with a high-quality chord recognition
algorithm. Rather, our goal is to find out which chords
can be identified based on rather straightforward use of the
functions described in Section 2 and 3.

A chord is, in a formulation due to Wikipedia, a set of three
or more notes that is heard as if sounding simultaneously
[17]. The notes in a chord are not necessarily initiated at
the exact same time. At top-level, chords are identified by a
function map-chords, which is shown in Appendix A.4. This
is a higher-order function which applies a given function on
every sublist identified as a chord. Internally, map-chords

calls step-and-map-bites which is one of the functions we
described in Section 3. We use step-and-map-bites to-
gether with a bite function generated with bite-while-

-element-with-accumulation. This bite function takes a
bite of notes, where each note is temporally relatively close
to the previous note. The predicate of step-and-map-bites
(the second parameter) asserts if the relevant notes of the
bite fulfill a chord formula. If it is not the case, the step-
ping mechanism of step-and-map-bites is activated. This
implies that a new bite of temporally close notes is taken,
and so on. Please take a look in Appendix A.4 for additional
details.

4.5 Noise elements
In all but the first example in this section, it is useful to
zoom in on certain MIDI events, and to be able to disre-

gard all other events. This is possible by use of the so-called
noise predicate mentioned briefly in Section 2. The noise
predicate can be applied on elements of the list, from which
bites are taken. Elements that satisfy the noise predicate
are disregarded while identifying a bite (in predicates, com-
parison, accumulation, etc.), but noise elements appear in
the resulting bite.

In the function that locates pauses, map-paused-sections,
which is shown in Appendix A.2, all non-NoteOn events (such
as instrument selection, sustain and tempo changes) are con-
sidered as noise. In addition, map-paused-sections relies on
a relevance function (third parameter) which at a detailed
level points out the MIDI events which should be taken into
account when looking for pauses. This may, for instance, be
all notes in a particular channel above a certain note value
(pitch value). The negation of the relevance function is used
as noise function of the bite function “under the hood”. This
separation of concern turns out to be very useful: The fil-
tering of relevant messages takes place in the generation of
the bite function (bite-while-element-with-accumulati-
on), totally separated from the logic that deals with the rules
for pauses in the music.

In the function that identifies sustain intervals, all non-
sustain messages (such as NoteOn messages) are noise el-
ements. In the chord identification function only NoteOn

events in a given channel are relevant. All other messages
are considered as noise.

4.6 Discussion
As mentioned in the introduction to Section 4, the primary
use of bite functions in a music related context is to identify
structures in the music. Some structures, such as the use
of tracks, are already manifest in the representation of some
Standard MIDI files. The bar structuring can also appear
explicitly in the MIDI LAML representation of Standard
MIDI files.

Some structures are very difficult to identify automatically.
Although we may attempt to capture song lines and song
verses via use of bite functions, it is our experience that
it is not always realistic to accomplish this with success.
Therefore, the MIDI LAML environment contains a num-
ber of facilities for manual introduction of additional struc-
tures. This includes manual insertions of MIDI markers
(meta events), and systematic transformation of events in
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a dedicated channel to MIDI markers. See the paper about
MIDI programming in Scheme [9] for additional details.

The programming technique explored in this paper relies,
to large extent, on higher-order function that receives and
generates functions. As a typical scenario, a bite mapping
function receives both a bite function bf and a bite transfor-
mation function btf. bf may be generated by one of the bite
generator functions from Section 2 on the basis of several
other functions, such as a list element predicate, an accu-
mulator, and a noise function.

It turns out to be a typical situation that the information
established by one function, such as the bite function bf, also
is needed by another function, such as the bite transforma-
tion function btf. As a concrete example, the direction of
the pedal in Section 4.3 and Appendix A.3 is identified in
the bite function, but it is also needed in bite transforma-
tion function. It would clutter everything if we attempted to
pass this “additional information” as the function result to-
gether with the “main function result”, for instance with use
of multiple valued functions. In pure functional program-
ming, passing the information via an output parameter is
not feasible either. We choose to re-calculate the informa-
tion in the bite transformation function - as the least evil
way out of the problem. It is possible to abstract the du-
plicated parts to a common lambda expressions at an outer
scope level, but this solution does not necessarily lower the
complexity of the program. As an alternative, it could be
tempting to let the bite function fuse the needed information
into the bite, hereby transferring it to the bite transforma-
tion function. This solution requires that it is possible to
associate extra information with the bites.

5. RELATED WORK
In this section we will discuss existing work which is related
to our work on bites of lists.

The idea of capturing recursive patterns using “Functions
with Functions as Arguments” first appeared in John Mc-
Carthy’s seminal paper about recursive functions and sym-
bolic expressions from 1960 [7]. In this paper, the maplist

function (as mentioned in Section 1) appears together with
a linear search function. It soon became clear that a large
class of list-related problems can be solved by a few appli-
cations of map and filter, typically followed by some re-
duction. During fifty years, the use of mapping and filtering
functions together with reduction functions have played a
role in almost any textbook about Lisp, Scheme, and other
functional languages.

Common Lisp supports functions on sequences [15]. A Com-
mon Lisp sequence is a generalization of lists and one-dimen-
sional arrays. Many of the Common Lisp sequence functions
are higher-order functions. Some functional arguments are
passed as required parameters, others are passed as keyword
parameters. The processing of successive bites, as proposed
in this paper, can be handled by use of the :start and :end

keyword parameters in many of the sequence functions. The
:start and :end keyword parameters delimit a sublist which
subsequently can be processed in various ways (removed,
substituted). By use of these keyword parameters a Com-
mon Lisp programmer can do simple bite processing. The

Common Lisp sequence functions operate at the level of list
elements. Only element testing and element transformation
is provided for. In contrast, the bite mapping and filtering
functions in this paper work on sublists as such. The higher
level of abstraction in the bite-related functions may be con-
venient and powerful in some contexts, but it is also quite
expensive. The cost comes primarily from copying prefixes
of a list, in order to form the bites.

There exists a variant of Common Lisp sequences called se-
ries (see appendix A of [15]). In this work the main focus
is on automatic transformation of series to efficient itera-
tive looping constructs [16]. In our current work it would
be interesting and useful to consider similar techniques for
obtaining more efficient mapping and filtering of bites. A
number of functions in the series package are oriented to-
wards splitting of a list into one or more sublists (split,
split-if, subseries, chunk). As such, it is plausible that
some of the bite processing programs discussed in this paper
can be converted to use functions from the series library.

R5RS Scheme [5] is quite minimalistic with respect to list
supporting functions. The repertoire of list functions in
the R6RS Scheme standard libraries [14] is more compre-
hensive. In relation to R5RS, additional list functions are
supported by SRFIs, most notable the SRFI 1 List Library
[13]. This library supports the drop and take functions.
The expression (take lst i) returns the first i elements of
lst, and it corresponds to the ((bite-of-length i) lst).
The SRFI 1 function take-while correspond to the function
bite-while-element, as described in Section 2.

Modern object-oriented programming languages handle a
variety of different collection types via so-called iterators.
An iterator is a mutable object that manages the traver-
sal of a collection. The LINQ framework (well described in
[1]) of C# [2] is a good example of a system which han-
dles the processing of data collections via use of iterators.
There exists a number of LINQ query operators that are re-
lated to sub-collections (Take, TakeWhile, Skip, SkipWhile,
GroupBy). It remains to be seen to which degree the existing
query operators can be used directly for the purposes that
are discussed in this paper. If this is not the case, it should
be noticed that it is easy to define new, specialized query
operators (as extension methods in static classes) that carry
out specialized operations of collections.

The concept of bites, as introduced in this paper, is known as
slices in other contexts. Some programming languages have
special notation for slicing. A good example is Python [6]
which generalizes the classical subscripting notation seq[i]

to slicing notation seq[i:j]. In this expression both i and
j are optional. Therefore, the Python expression seq[:j],
which extracts the first j elements of a sequence object,
corresponds to ((bite-of-length j) seq) using the bite
generator bite-of-length from Section 2 of this paper.

As much more advanced notation, known as list comprehen-
sion, is supported in many programming languages (such
as in Haskell [4] or Python [6]). List comprehension, which
is inspired by conventional mathematical set building nota-
tion, is a syntactic abstraction over applications of mapping
and filtering functions. Therefore, list comprehension may
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Figure 4: Three different situations of bite taking and bite
transformation.

be used as an alternative to explicit mapping and filtering
when we wish to process sublists of list.

During the last few years, the words “map” and “reduce”
have been used to characterize a particular kind of parallel
processing of very large collections of data. MapReduce [3],
as used by Google, works on key/value pairs, and (in part)
because of that, its relation to the original work on mapping,
filtering and reduction is relatively weak. In the scope of
this paper, it may be interesting to notice that the initial
chunking of data (as a preparation for the parallel mapping
in MapReduce) may be realized by taking bites of a list.
The initial chunking is, however, not really a central part of
MapReduce.

In an earlier paper about mapping and filtering in functional
and object-oriented programming [11] we have described the
idea of general mapping. General mapping is characterized
by (1) element selection, (2) element ordering, (3) function
selection (selection of function(s) to apply on the selected
elements), (4) calculation (which transformation to apply),
and (5) the result of the mapping. Relative to this under-
standing, the current paper contributes to the first aspect,
namely a more elaborate way of selecting the part of list to
be transformed in the mapping process.

6. CONCLUSIONS
The abstractions introduced in this paper are useful in situ-
ations where it is necessary to process selected sublists of a
list, in contrast to individual elements of a list. As illustrated
in Section 4 the generated bite functions are, together with
the bite mapping functions, useful for discovering structures
among the elements in a list. As a use case, we have demon-
strated how a number of important music related structures
can be captured in Standard MIDI Files.

Figure 4 illustrates three typical bite mapping scenarios,
supported by our bite mapping functions. The most regular
scenario, as supported by map-bites, is a complete, disjoint
chunking of a list followed by processing of the chunks, as
shown in Figure 4(a). With use of step-and-map-bites we
can approach application areas in which we more exhaus-
tively search for certain “sequences of consecutive elements”
which together not necessarily span the entire list. This sit-
uation is sketched in Figure 4(b). As mentioned briefly in
Section 3, it is also possible to extract and process overlap-
ping sublists with use of step-and-map-bites. This situa-
tion is shown in Figure 4(c).

The organization of the sublisting facilities as higher-order
functions has been the primary focus of this paper. We have
striven for natural generalizations of the classical map and
filter functions, which are well-known in most functional
programming languages. Thus, the main emphasis in this
paper has been to provide mapping and filtering of sublists
via a few functions (such as map-bites and filter-bites)
which take other functions are parameters. The bite func-
tions introduced in Section 2 are of particular importance
among these function parameters. We have explored how a
number of useful bite functions can be produced by bite
function generators, such as bite-of-length, and bite-

-while-element.

The functions discussed in this paper and their API docu-
mentation are available on the web [10].
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APPENDIX
A. DETAILED MIDI PROGRAMS
In this appendix we present more detailed examples related to the MIDI application area. The examples are all introduced
and discussed at an overall level in the subsections of Section 4.

A.1 Bars
The MIDI function library contains a function map-bars, which activates map-bites with an appropriate bite function and
bite transformation function. Here is a sample application of map-bars on some temporally strict music referred to as
SOME-MIDI-EVENTS:

(map-bars

(lambda (messages n st et) (list (midi-marker-abs-time st "Bar" n) messages))

480 ; Pulses Per Quarter Note.

’(4 4) ; Time signature is 4:4.

SOME-MIDI-EVENTS

)

In addition to the messages in the bar, the function mapped over the bar (the lambda expression shown above) receives a bar
number n, the start time st, and the end time et of the bar. In the body of the lambda expression, we see that the messages
in the bar are being prefixed with a MIDI marker.

In absTime mode, the function map-bars is implemented in terms of map-bites using a bite function generated by bite-

-while-element. Here is an outline of the use of map-bites in map-bars:

(define (map-bars f ppqn time-signature . messages)

...

(map-bites

(lambda (lst . rest) ; The bite function.

(let* ((start-time-first-mes (midi ’absTime (first lst)))

(bar-number (quotient start-time-first-mes ticks-per-bar)) ; Zero based.

(bar-start-time (* bar-number ticks-per-bar))

(bar-end-time (+ bar-start-time ticks-per-bar))

)

((bite-while-element (lambda (mes) (< (midi ’absTime mes) bar-end-time)) ’sentinel "first") lst)))

(lambda (bite) ; The bite transformation

(let* ((start-time-first-mes (midi ’absTime (first bite))) ; function.

(bar-number (quotient start-time-first-mes ticks-per-bar))

(bar-start-time (* bar-number ticks-per-bar))

(bar-end-time (+ bar-start-time ticks-per-bar))

)

(f bite (+ bar-number 1) bar-start-time (- bar-end-time 1)) )) ; Activation of f on the bar.

messages))

The bar-number, bar-start-time and bar-end-time are needed for taking a bar bite from the MIDI messages. As it appears,
these values are recalculated in the bite transformation function, as a service to the function f being mapped to the bars
of the music. These calculations can be lifted out of the map-bites application to a multi-valued function. But due to the
unpacking of these values in both lambda expressions, the modified programs is not shorter, not simpler, and probably not
more efficient than the version with the recalculations shown above. As discussed in Section 4.6, it seems to be typical that
information calculated in the bite function also is useful in the bite transformation function.

As an example of a more elaborate use of map-bars, we will show how it is possible to slide the tempo of every fourth bar
down to half speed, and back again to normal speed:
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(map-bars

(lambda (messages n st et)

(if (and (> n 0) (= (remainder n 4) 0)) ; Every fourth bar.

(list

(tempo-scale-1 20 ; Use tempo scaling.

120

(make-scale-function-by-xy-points ; A scaling function

(from-percent-points ’((0 100) (50 50) (100 100)))) ; use for tempo scaling.

120 ; Base tempo is 120 BPM.

messages

)

(midi-marker-abs-time st "Bar" n) ; Still inserting markers.

)

(list messages (midi-marker-abs-time st "Bar" n)))

)

480

’(4 4)

SOME-MIDI-EVENTS)

As it appears in the lambda expression shown above, bars with bar numbers divisible by 4 are tempo scaled by use of the
function tempo-scale-1. The details of the tempo scaling is not relevant for this paper.

A.2 Pauses
At the top level, pauses are captured in a similar way as we located the bars in Appendix A.1.

(map-paused-sections

(lambda (n mes-lst)

(list (midi-marker "Start of paused section" n "P") mes-lst))

130 ; Pause time ticks.

(lambda (ast) (and (NoteOn? ast) (= (midi ’channel ast) 1))) ; The relevance function.

SOME-MIDI-EVENTS)

The function map-paused-sections has been implemented with use of map-n-bites and a bite function generated by
bite-while-element-with-accumulation:

(define (map-paused-sections f pause-ticks relevance-predicate . messages)

(map-n-bites

(bite-while-element-with-accumulation

(lambda (mes sound-frontier-time) ; The predicate.

(not (and (> (midi ’absTime mes) sound-frontier-time)

(> (- (midi ’absTime mes) sound-frontier-time)

pause-ticks))))

(lambda (sound-frontier-time NoteOnMes) ; The accumulator.

(max sound-frontier-time

(+ (midi ’absTime NoteOnMes) (midi ’duration NoteOnMes))))

0 ; The initial value.

(lambda (x) ; The noise function.

(and (ast? x)

(or (not (relevance-predicate x)) (not (NoteOn? x)))))

)

(lambda (midi-messages-bite n) ; The bite transformation

(f n midi-messages-bite)) ; function.

messages))
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A.3 Sustain intervals
The following application of map-sustain-intervals illustrates how to obtain a faster release of the sustain pedal, without
affecting the way the pedal is moved downwards.

(map-sustain-intervals

1 ; The channel affected.

(lambda (messages n direction) ; The function mapped on

(cond ((eq? direction ’increasing) ; intervals of messages that

messages) ; are monotone in sustain

((eq? direction ’decreasing) ; control messages.

(scale-attribute-by-factor-1

(lambda (ast) (ControlChange? ast 64 1))

’value

0.75

messages))

((eq? direction ’constant)

messages)

(else (laml-error "Should not happen"))))

SOME-MIDI-EVENTS)

Only in intervals with decreasing pedal movement, the value attributes of the appropriate ControlChange messages are scaled
by the factor of 0.75.

The function map-sustain-intervals is implemented with use of map-n-bites. The bite function is generated by bite-

-while-monotone.

(define (map-sustain-intervals channel f . mes)

(let ((cc-val-comp

(make-comparator

(lambda (cc1 cc2) (< (midi ’value cc1) (midi ’value cc2)))

(lambda (cc1 cc2) (> (midi ’value cc1) (midi ’value cc2)))))

(noise-fn (lambda (x) (not (ControlChange? x 64 channel))))

)

(map-n-bites

(bite-while-monotone ; The bite function generated

cc-val-comparator ; with bite-while-monotone.

noise-fn)

(lambda (mes bite-number) ; The bite transformation

(f mes bite-number ; function.

(cond ((increasing-list-with-noise? cc-val-comp noise-fn mes)

’increasing)

((decreasing-list-with-noise? cc-val-comp noise-fn mes)

’decreasing)

(else ’constant))))

mes)))

As it appears, the sustain interval map function f gets information about the monotonicity of the MIDI message interval.
This information has already been established in the bite function, but it needs to be re-calculated in the bite transformation
function (via the two calls of increasing-list-with-noise). Without this information, we would not have been able to
accomplish the task of dimming only the release of the pedal.

A.4 Chords
Chord identification makes use of step-and-map-bites instead of map-bites. Hereby the chords are identified in a more
elaborate searching process than we have seen in the other examples. At top level, we search for chords in channel 1 of a piece
of music in this way:

(map-chords

1 ; Channel number.

40 ; Max chord note distance.

chord-marker ; Chord markup function.

SOME-MIDI-EVENTS)
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The function chord-marker inserts markers (MIDI meta events) around a chord. In addition to a“chordal bite”, chord-marker
receives the channel number, the bite number, the successful chord formula, and the chord name.

Here follows the function map-chords in order to illustrate the use of step-and-map-n-bites and the bite function generated
by bite-while-element-with-accumulation.

(define (map-chords channel max-time-diff f . messages)

(let ((normalized-note-val (lambda (noteon-mes) (remainder (midi ’note noteon-mes) 12)))

(relevant-message? (lambda (x) (and (NoteOn? x) (= channel (midi ’channel x)))))

)

(step-and-map-n-bites

(bite-while-element-with-accumulation

(lambda (mes prev-time) ; Keep going while

(if prev-time ; notes are dense.

(if (< (- (time-of-message mes) prev-time) max-time-diff)

#t

#f)

#t))

(lambda (time mes) ; Accumulate time of

(time-of-message mes)) ; previous note.

#f ; Initial accumulation value

(negate relevant-message?) ; The noise function.

)

(lambda (bite) ; The int returning

(let ((chord-list ; predicate ...

(map (lambda (no) (normalized-note-val no))

(filter relevant-message? bite))))

(if (chord-match? (normalize-chord-list chord-list)) ; ... that determines a

(length bite) ; chord match

-1))) ; or a stepping value.

(lambda (bite n) ; The function applied on a

(let ((normalized-chord-list ; a chordal bite. Prepares

(normalize-chord-list ; calling f with useful

(map (lambda (no) (normalized-note-val no)) ; information.

(filter relevant-message? bite)))))

(f bite channel n normalized-chord-list

(chord-name-of-normalized-note-list normalized-chord-list))))

messages)))

As it appears, we locate chords in a given channel, among notes with max-time-diff time ticks between them. Only
NoteOn messages in the given channel are taken into account. The noise function, formed by generating the negation of
relevant-message? shown in line 3 of the fragment above, is important for disregarding MIDI events, which are irrelevant
to the chord recognition process.
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