
Teaching Nondeterministic and Universal Automata using Scheme

Christian Wagenknecht� and Daniel P� Friedmany

Computer Science Department

Indiana University

Bloomington� IN �����

October �� ���	

Abstract

A serious study of computer science should include the theory of formal languages� abstract au�
tomata� computability� and complexity� The primary advantage of delivering this material is to teach
the foundations and limitations of computation� A knowledge of standard proof methods and modeling
is important for the development of good problem solving skills in the young computer scientist� thus�
the theoretical aspect of this material should be taught in a very deliberate manner� There is a danger
that students will pro�ciently� yet blindly� execute transition functions of formally de�ned automata
without ever attaining a deeper understanding of the semantics of the machines� Furthermore� many
di�erent� but equivalent� de�nitions of the various terms abound in the literature� This equivalence is
a pleasure for the teacher� but can cause confusion for the beginner�

We describe a new way of teaching students how to think about abstract automata� We restrict our
attention to acceptors� i�e�� transition machines with a particular communication unit interacting with a
local tape object� The transition behavior is the de�ning property of an automaton� However� the tape
is updated �recon�gured� in di�erent ways� depending on the type of machine� The communication unit
is implemented in an object�oriented manner� which hides the details from the students at the beginning
of the learning process� Because our approach is based on the idea of representation independence� the
actual implementation of the appropriate primitives may be seamlessly changed later�

The abstract terms� i�e�� the vocabulary of automata theory� are descirbed in a precise manner

using the high�level language Scheme� This makes the ideas and de�nitions concrete and explorable�

The functional representation of an automaton� as well as each of its states� enables us to focus on

the important ideas of state� transition� and nondeterminism rather than the mathematical syntax�

Additionally� students are provided the invaluable and unusual opportunity of experimenting with very

abstract concepts�

� Introduction

Traditionally� an automaton is de�ned by giving a description of each of its components� that is� an
automaton is de�ned to be a k�tuple� where k depends on the particular type of automata� Indeed�
there is no serious reason to choose a tuple or a list to represent a unique automaton object� The
imposed ordering of the elements in a tuple� and the possibility of duplicates� are mathematical
constraints that provide mechanisms for building composite objects� A practical disadvantage
of this de�nition is that nobody is really able to remember the chosen sequence of the items in a
��tuple� Martin ��� p���� presents a brief look at the use of mathematical tuples to de�ne automata�

�Supported by the Deutsche Forschungsgemeinschaft �DFG� and the HTWS Zittau�G�orlitz 	 sabbatical from

������ through
�������� wagenkn�inf�gr�htw�zittau�de

yfriedman�cs�indiana�edu

	

The de�nition of an extended transition function is supplemented by a very informal descrip�
tion of how the particular kind of automaton operates and could accept a certain set of inputs�
Following the traditional mathematical culture� Kelley �
� and other authors replace those informal
descriptions by formal notations� This extends the de�nition signi�cantly and leads to a more
cumbersome formulation�
The main objective of this paper is to demonstrate how a convenient programming language� like

Scheme� can be used to de�ne very abstract terms with a function�oriented implementation� where
programming means describing much more than code generation� This approach is based mainly on
the idea of learning by programming� A Scheme representation gives both a clear de�nition of the
terms and an opportunity to execute and manipulate the de�ned object by� for instance� applying
it to di�erent input or passing it to other procedures�
This paper is divided into �ve sections� After this introduction� section
 conveys the main idea

of procedural acceptor�s representation� The proposed implementation is similar to the diagram
representation that is usually used to illustrate the possible transitions between the states of an
automaton� There is no doubt that such diagrams contribute something towards understanding
how the automaton operates� but they do not completely capture its behavior� So we introduce
a communication unit that provides a high�level communication with an object that might be
imagined as an instance of a particular abstract data type or of a class with regard to the specialized
type of automaton� An object�oriented implementation of all types of communication units is
presented in section �� To present readable code we prepared some procedures shown in the
appendix� Section contains several examples illustrating the application of the introduced Scheme

representation strategy to the di�erent types of automaton� We conclude with a brief re�ection of
the pedagogic value of our approach�

� What is an automaton�

��� The transition system

The most important terms in the theory of automata are state and transition� both of which have
the meaning one intuitively expects� It is necessary� however� to de�ne these terms formally�
A state of a system is a description of the current reality of that system� Imagine it as a

snapshot of the system at some de�nite point in time� Transitions are changes of state that can
happen spontaneously or in response to an external input on a tape� The network of transitions�
also called a transition system� can be visualized by a transition graph as illustrated in �gure 	�

qx

qy

qz

Figure 	� Transition graph

If the automaton shown in �gure 	 is in state qx� then the next state will be either qy or qz�
The state qz is emphasized in bold because it belongs to the set of �nal states for this system�
To �ll in the rectangular tags on the arrows� we must �rst specify the type of automaton� We
discuss di�erent types of automata below when we introduce the communication unit� This unit is
a data object t� i�e�� some kind of tape�object� and it de�nes the interactions of the control with
the contents of the tape in terms of procedures� These interactions correspond to the tags on the

arrows in the transition graph and they determine the particular type of communication unit to be
used�
Here is a Scheme implementation of the transition system visualized in �gure 	�

�de�ne qx

�lambda �t�
�case �at t�
��� � � � �recon�g� t� �qy t��
��� � � � �recon�g� t� �qz t��
�else �f����

After reading the current symbol on the tape t� with �at t�� the tape must be recon�gured� with
�recon�g� t�� and then the transition process continues with either qy or qz� Because qx is not a
�nal state� the return value is �f� �This does not imply that the return value is always �t in the
case of a �nal state��
The main idea of this implementation is that each state of an automaton is a procedure that

takes the object t and either returns �t or �f� or e�ects the transition to the next state� Thus� a
transition is implemented as a procedure invocation�

An automaton is implemented with a procedure that encodes the entire transition system and

that speci�es the communication unit� This procedure expects the name of the starting state as an
argument and returns a procedure of one argument to receive the input� The tape�object t will be
initialized with this input�
We limit our discussion to acceptors� We implement a procedure that upon termination returns

�t if the input is accepted by the automaton� and �f otherwise �see �gure
�� The syntax of the
input that is tested for acceptance is explained in subsection
�
�

��automaton �q�� ����� �a a b ����

�t � �f

Figure
� Run an acceptor on the input aab

Passing the name of the start state as an argument yields a very convenient representation for
nondeterministic automata as well� A skeleton of the automaton�s de�ned procedure might look
like this�

�

�de�ne automaton

�lambda �start�
�eval
��letrec � Note the quasiquote mark�
��q� �lambda �t� � � � ��
�q� �lambda �t� � � � ��

�

�

�qn �lambda �t� � � � ���
�let ��t �tape�type���
�lambda �input�
�init� t input�
�eval �list �start t�������� � Note the comma�

A more convenient invocation that is equivalent to the application in �gure 	 is
�run automaton �q� ����� �a a b ����� see the appendix�

��� The communication unit

During each transition� an interaction� i�e�� message passing occurs� with a private communication
unit� You can think about it as an abstract data type� A particular tape�object t is an instance
that understands the following four messages�

init� initializes t

at returns a copy of the appropriate item from t

recon�g� recon�gures t

contents returns the current value of t �not only an item�

The tape�object� usually referred to as tape� has unbounded size� meaning potentially in�nite or�
informally �as long as needed� to the left and to the right� There are three kinds of communication
units�

	� read�only�tape

� read�write�tape

�� read�only�tape�with�mp�stack

A tape is divided into consecutive cells� Each cell is preassigned with a blank� usually writ�
ten as �� There is a head that has read�only or read�write capability� depending on the kind of
communication unit� The capability of the head is indicated in the name of the object�
Following a suggestion of Springer and Friedman �� p������ a con�guration� for example as given

in �gure �� is internally represented by the list ��a y x �� �b ���� see section � for implementation
details� Note that the sequence of cell contents is reversed for those to the left of the tape head�
Usually� we will initialize an automaton with an empty left sequence� for example� ���� �a a b

��� represents the input aab on the tape at the beginning as in �gure
�
The internal representation provides an e�cient invocation� but it is not convenient for human

beings interacting with the system� For that reason the external representation of the input used to

� �� x y a b � � �

Figure �� Tape con�guation according ��a y x �� �b ���

initialize the tape corresponds to the real sequence� As explained below for the example in �gure ��
the instruction is �init� t ���� x y a� �b ����� which is somewhat easier to read�
The read�only�tape�with�mp�stack possesses a multipush stack� There is a procedure to push

an entire list on the stack so that the �rst item of the list is on the top on the stack�
We provide an object�oriented implementation for the communication units in section �� It is

not necessary to understand the details of the implementation in order to use the package� Simply
access the code from http���www�inf�gr�htw�zittau�de��wagenkn� load the implementation �le
into Scheme� �load �c�unit�ss��� and the system is ready� To create an instance of a particular
class� invoke the appropriate zero�argument procedure� for example �read�only�tape�� Thus �tape�

type� in the Scheme program automaton in subsection
�	 can be replaced with �read�only�tape�
to indicate the desired type of communication unit� This must be done for each new de�nition of
an automaton since the type of the communication unit determines what the automaton is called�
Similarly� the associated procedures have di�erent meanings� To avoid a lot of formal notation�

we will describe the arguments and procedures with examples� Of course� the accompanying Scheme

code provides precise de�nitions of their meaning�

�

Finite state automaton � fa

Communication unit� read�only�tape

�init� t ����� �h e l l o ���� writes the input hello on the tape t� so that each character is associ�
ated with a separate cell� The head points at the �rst character� h�

�at t� returns the character in the cell pointed to by the head� There is no head movement�

�recon�g� t� Moves the head exactly one cell to the right�

�contents t� returns a list of two lists� the �rst represents the left part of the tape and the second
represents the right part of the tape� with the head positioned on the �rst character of the
second list�

Turing machines � tm

Communication unit� read�write�tape

�init� t ����� �h e l l o ���� writes the input hello on the tape t� so that each character is associ�
ated with a separate cell� The head points at the �rst character� h�

�at t� returns the character in the cell pointed to by the head� There is no head movement�

�recon�g� t �c �left� writes a c on the current cell and move the head exactly one cell to the left�
There is also a movement to the right by replacing �left by �right�

�contents t� returns a list of two lists� the �rst represents the left part of the tape and the second
represents the right part of the tape� with the head positioned on the �rst character of the
second list�

Pushdown automaton � pda

Communication unit� read�only�tape�with�mp�stack

�init� t ������ �h e l l o ��� ���� writes the input hello on the tape� so that each character is
associated with a separate cell� The head points at the �rst character� h� Moreover� the stack
is initialized with ���� meaning the top of the stack is ��

�at t� returns a list �h �� of the value in the current cell and the top of stack� The top of stack is
popped� There is no head movement�

�recon�g� t �tape ��A B C�� moves the head of the tape exactly one cell to the right and multi�
pushes the possibly�empty word� here ABC� onto the mp�stack� The new top of the stack is
the �rst character of the word� here A� If �tape is omitted� then no head movement occurs�
This is a spontaneous transition�

�contents t� returns a list of two lists� The �rst list represents the tape contents �in the usual
manner as a list of two lists� and the second represents the stack contents�

�

Now we have a well�de�ned communication unit and� therefore� the term automaton is precisely
de�ned� We next describe what it means for an automaton to accept a particular input� Recall
that every automaton begins with an initalized communication unit� An fa accepts an input if it
enters a �nal state and the head reaches the �rst blank immediately after the right end of the input�
A tm accepts an input if it enters a �nal state� regardless of the current contents of the tape� A
pda accepts an input if it enters a �nal state and the head reaches the �rst blank immediatly after
the right end of the input� regardless of the contents of the mp�stack�

��� Nondeterministic acceptors

Nondeterministic means that there may be more than one possible next state on a particular input
symbol� Which transition should be used�

Thinking about nondeterminism of a transition machine means�

	� Create new machines� one for each possible next state� by cloning the current automaton�
This includes copying the communication unit with its current content�

� Each possible next state becomes the start state of one of these derived automata�

�� The input is said to be accepted if one of these automata returns �t� Otherwise� if they fail�
the input is not accepted�

With this characterization we have eliminated the need to cover backtracking strategies� walks
through trees and so forth� Henceforth� we use the names nfa� ntm� and npda to refer to nondeter�
ministic machines� To distinguish the deterministic machines� we use dfa� dtm� and dpda�
Consider the following portion of a transition graph for an nfa�

qn

q�

q�
a

a

qx
a

Figure � Portion of a transition graph � nfa

Here is a Scheme representation of the above graph�

�de�ne nfa

� � �
��qx �lambda �tape�

�case �at tape�
��a� �recon�g� tape�

�or �clone�and�run nfa �q� tape�
�clone�and�run nfa �q	 tape�

�

�clone�and�run nfa �qn tape� � � � �

Recall that the or operation in Scheme evaluates each operand in sequence until one evaluates to
true �i�e�� non��f�� in which case the evaluation stops with that value� It is not even a �parallel�or�
implemenation� If the operands evaluate to �f� then so does the or expression�

�

Obviously� the implementation of an nfa is easy� A bit more e�ort is required for ntm and npda�
since the transitions involve changes on the tape and the stack� respectively� However� we simply
follow the steps given above to generate the program�

a��a�R�

a��b�L�

q�

q�

q�

Figure �� Portion of a transition graph � ntm

� � �
�q�
�lambda �tape�
�case �tape �read�
��a� �or �let ��t �read�write�tape���

�init� t �contents tape�� �recon�g� t �a �right� �clone�and�run ntm �q	��
�let ��t �read�write�tape���
�init� t �contents tape�� �recon�g� t �b �left� �clone�and�run ntm �q
�������

� � �

Next we present an extension of nondeterministic automata with ��transitions� i�e�� spontaneous
transitions that ignore the tape� We will consider a part of an npda�s transition graph and develop
the corresponding Scheme implementation in a straightforward manner�

�A�b��Z

�A�a��YY

�A����X

q	

q�

q�

q�

Figure �� ��transitions � npda

� � �
�q�
�lambda �tape�stack�
�let ��symbol�top �at tape�stack���
�case �cadr symbol�top�
��A� �or �let ��t�s �read�only�tape�with�mp�stack���

�init� t�s �contents tape�stack��
�recon�g� t�s ��X��
�clone�and�run npda �q	 t�s��

�case �car symbol�top�
��a� �recon�g� tape�stack �tape ��Y Y�� �q� tape�stack��
��b� �recon�g� tape�stack �tape ��Z�� �q� tape�stack���������

� � �

�

There are some di�culties regarding ��transitions� For simplicity imagine a bidirectional ��
transition between two states of an nfa� This could imply an in�nite transition path� Observe that
for all inputs that are not accepted� the automaton terminates and returns �f� This is signi�cantly
di�erent from the situation where an automaton� on an unaccepted input� never stops and� thus�
never returns any value�
This problem can be solved because for every nfa with ��transitions there exists an equivalent

nfa without ��transitions� The main idea of this theorem could be expressed in a Scheme procedure
that takes the original automaton as input and returns the equivalent ��free one� We will not�
however� use this approach here�

��� The Universal Turing Machine �UTM�

The left part of the tape is empty� meaning each cell is preassigned with blanks� The right part of
the tape contains a word that represents the de�nition of a tm� followed by one blank� followed by
an input to the tm�
The UTM scans the word de�ning the tm and stops after recognizing the intermediate blank

at the cell that contains the �rst character of the input� Meanwhile� the word that de�nes the tm
is overwritten with blanks� Thus� the con�guration now� as usual� means the left part of the tape
is empty� and the right part contains the input�
The UTM simulates the control of the particular tm by interpreting the �rst scanned word and

applying it to the input�
We adopt some conventions to minimize the code�

	� The starting state of the simulated tm is generally called start �

� The word describing the Turing machine is represented by a list of the form
�de�ne tm � � � �

In �gure �� we reveal that the operation �read from a tape� is actually implemented using car�
This leads to a convenient reading of sublists� assuming that the list is stored in one cell of the
tape� Otherwise� if the list is stored character by character in a sequence of consecutive cells� the
scanning process is somewhat more expensive� Two recon�gurations are needed since we assume
that there is one blank cell between the list describing tm and the input of tm�

�de�ne utm

�lambda ��
�let ��start �lambda �tape�

�eval �at tape��
�recon�g� tape �� �right�
�recon�g� tape �� �right�
�run tm �start �contents tape�����

�let ��t �read�write�tape���
�lambda �input�
�init� t input�
�start t������

For example� consider the particular tm in �gure 	�� Following our conventions� we rename
loopright to be start and busy�beaver to be tm� In this example the blank appears as the tm�s
input� If abc is the input� we invoke �utm�run ����� ��de�ne tm �lambda � � � �� � a b c �����

�

� �run�utm ����� ��de�ne tm

�lambda �start�
�eval ��letrec

��start �lambda �tape� � � � �� � � �� � � �� � � �� � � �� � � �� � � �
����

��� a a a a� �a a ���
�t

� Implementation of communication units

The object�oriented implementation of the di�erent communication units �described below�� pro�
vides three important advantages�

	� The speci�cation of automata is not required to make use of the implementation of the unit�
We exploit the well�known technique of data abstraction�

� The implementation illustrates the relations that exist between the di�erent classes� commu�
nication units� and automata�

�� It is possible to change the implementation without needing to change the automaton�s def�
inition� It is a valuable exercise to investigate alternate implementations or di�erent data
structures� like streams� which would capture the unbounded length of the tape�

multipush�stack

read�only�tape�with�mp�stack

read�only�taperead�write�tape

M� show� read
 init�� write�� left�� right�

tape

M� read� show
 init�� recon�g�

M� show
 init�� read�� recon�g�

M� show
 init�� push�� pop�

M� read� show
 init�� recon�g�

Figure �� Class hierarchy

We use the delegation model in this object�oriented implementation� Delegation implies that
a subclass has a private instance of a superclass�s object responding to the forwarded messages�
More details are presented in Friedman� Wand and Haynes �	�� Springer and Friedman ��� and
Wagenknecht ���� For example� the class read�write�tape in �gure � understands the message read�
The method to be invoked when a readmessage is received is de�ned in tape� Thus a read�write�tape
object contains a private instance of a tape class� that handles the read messages�
Moreover� delegation provides a convenient way to rede�ne methods inherited from a superclass�

and a mechanism for deactivating inherited methods� as well�
Now we can reveal why we reverse �see init�� show� the character sequence in the left part of

the tape� see �gure �� After a head movement one sublist loses an item� which the other sublist

	�

�de�ne tape

�lambda ��
�let ��blank ����
�let ��left�part �list blank��

�right�part �list blank���
�lambda message

�case �car message�
��init��
�set� left�part �reverse �caadr message���
�set� right�part �cadadr message���

��write��
�if �equal� right�part �list blank��
�set� right�part �cons �cadr message� right�part��
�set� right�part �cons �cadr message� �cdr right�part�����

��left��
�set� right�part �cons �car left�part� right�part��
�if �not �equal� left�part �list blank���
�set� left�part �cdr left�part����

��right��
�set� left�part �cons �car right�part� left�part��
�if �not �equal� right�part �list blank���
�set� right�part �cdr right�part����

��show�
�list �reverse left�part� right�part��

��read�
�car right�part��

�else �error �tape �Message �a cannot be evaluated� �car message���������

Figure �� De�nition of the class tape

gains� The natural Scheme procedure for inserting an item at the front of a list is cons� and� more
importantly� the Scheme procedure to retrieve the �rst item from a list is car� In a list� the left�most
item is the �rst one� So the left part of a tape is represented in the reverse order of how the items
actually appear on the tape� Furthermore� it is easy to understand why we mark the right end
of each list with the blank character �� If the head arrives at a cell where this blank character is
stored� further moves to the left or to the right would generate as many blank characters as needed�
Here is a sample run�

� �define t �tape��

� �t 	init
 	��� h e l l o� �r o b ����

� �t 	show�

��� h e l l o� �r o b ���

� �t 	write
 	b�

� �t 	show�

��� h e l l o� �b o b ���

� �t 	write ��

		

Error in tape� Message write cannot be evaluated�

Type �debug� to enter the debugger�

� �t 	left
�

� �t 	show�

��� h e l l� �o b o b ���

Two subclasses of tape are read�write�tape and read�only�tape� Certainly these de�nitions could
be developed by the students themselves� We recommend that the reader unfamiliar with this
approach to objects should create some instances and interact with them�

�de�ne read�write�tape

�lambda ��
�let ��tape�obj �tape���
�lambda message

�case �car message�
��recon�g��
�tape�obj �write� �cadr message��
�case �caddr message�
��right� �tape�obj �right���
��left� �tape�obj �left�����

��left� right� write��
�error �message ��a is prohibited for read�write�tapes� �car message���

�else �apply tape�obj message�������

Figure �� De�nition of the subclass read�write�tape

� �define rwt� �read�write�tape��

� �rwt� 	init
 	���� �����

� �rwt� 	show�

���� ����

� �rwt� 	right
�

Error in message� right
 is prohibited for read�write�tapes�

Type �debug� to enter the debugger�

� �rwt� 	read�

�

� �rwt� 	reconfig
 	d 	right�

� �rwt� 	show�

��� d� ����

� �rwt� 	reconfig
 	c 	left�

� �rwt� 	show�

���� �d c ���

� �define rot� �read�only�tape��

� �rot� 	init
 	���� �a b ����

� �rot� 	show�

	

�de�ne read�only�tape

�lambda ��
�let ��tape�obj �tape���
�lambda message

�case �car message�
��recon�g�� �tape�obj �right���
��left� right� write��
�error �message ��a is prohibited for read�only�tapes� �car message���

�else �apply tape�obj message�������

Figure 	�� De�nition of the subclass read�only�tape

���� �a b ���

� �rot� 	reconfig
�

� �rot� 	reconfig
�

� �rot� 	show�

��� a b� ����

For the implementation of a class read�only�tape�with�mp�stack� we need an mp�stack that looks
like this�

�de�ne mp�stack

�lambda ��
�let ��st �����
�lambda message

�case �car message�
��init��
�set� st �cadr message���

��show�
st�

��push��
�for�each
�lambda �x � �set� st �cons x st���
�reverse �cadr message����

��pop��
�if �null� st� �error �pop� �Stack is empty���
�let ��answer �car st���
�set� st �cdr st��
answer��

�else �error �tape �Message �a cannot be evaluated� �car message��������

Figure 		� De�nition of the class multipush�stack

The dialog describing the interaction with a stack object is just slightly di�erent from that with
tapes given above�

� �define st� �mp�stack��

	�

� �st� 	init
 	�a b c��

� �st� 	show�

�a b c�

� �st� 	pop
�

a

� �st� 	show�

�b c�

� �st� 	push�
 	�x y z��

� �st� 	show�

�x y z b c�

Note that push�� takes a list as its argument and pushes the items of the list onto the stack
starting with the last one� For readability� we write it as if were pushing the reversed list one item
at a time�

�de�ne read�only�tape�with�mp�stack

�lambda ��
�let ��tape�obj �read�only�tape��

�stack�obj �mp�stack���
�lambda message

�case �car message�
��init�� �tape�obj �init� �caadr message��

�stack�obj �init� �cadadr message���
��show� �list �tape�obj �show� �stack�obj �show���
��read� �list �tape�obj �read� �stack�obj �pop����
��recon�g��
�let ��second �cadr message���
�case second

��tape� �tape�obj �recon�g��
�stack�obj �push� �caddr message���

�else �stack�obj �push� second�����
�else
�error �message

��a is prohibited for read�only�tapes�with�mp�stack�

�car message��������

Figure 	
� De�nition of the class read�only�tape�with�mp�stack

� �define rotws �read�only�tape�with�mp�stack��

� �rotws 	init
 	����� �a b c ��� �����

� �rotws 	show�

����� �a b c ��� ����

� �rotws 	read�

�a ��

� �rotws 	read�

Error in pop
� Stack is empty�

	

Type �debug� to enter the debugger�

� �rotws 	show�

����� �a b c ��� ���

� Teaching experience and pedagogical remarks

Following the intended approach of teaching formal languages and automata to undergraduates�
three potential problems appear�

	� How can we motivate the students to deal with abstract ideas as discussed above�

� How do we get students familiar with using Scheme as a tool to describe instances of these
high�level terms��

�� How can we maintain the dovetailed approach of teaching di�erent types of formal languages
in conjunction with the appropriate kinds of automata� while following the more general
approach to understanding automata as suggested�

We now address the �rst two questions�
Earlier we started teaching theoretical concepts using Scheme without any kind of introduction

to this programming language itself� Students were only familiar with C and C��� i�e�� they had no
background in function�oriented programming� It turned out that almost all students mastered the
one semester course on theory involving Scheme with positive feedback regarding the integration of
the computer�s use� Nevertheless it was hard work for students until they got good results towards
the end of the semester� Consequently� the motivation to this pedagogical approach was not very
su�cient�
Taking both these considerations together� we introduced Scheme at the beginning of the course

in connection with treatments of the structure of a limited set of Scheme programs and their
evaluation� Following the ideas published in Friedman� Wand and Haynes ��� pp� ��� we used
Scheme to generate an abstract syntax tree relating to the concrete syntax of Scheme itself� This
transformation is simple and does not require prerequisites in compiler design�
This approach makes certain that students get a general understanding of how compilers and

interpreters work� We spend almost a quarter of the course on this part� While this is a considerable
amount of time� it guarantees that the contents are taught e�ectively� We now address the third
question�
Teaching formal languages in close connection with appropriate kinds of acceptors for each well�

known type of formal grammar might come into pedagogical con�ict with the more general issue
of teaching automata as suggested in our approach� We decided to keep the traditional method of
teaching but superimpose it on the new treatment of automata�
After the introduction of regular languages� dfa has to be taught� We did this with respect to

the following aspects considered in the given sequence�

General information	 An acceptor is an automaton that takes the input� writes it onto a tape�
object �using init� �� and calculates either true or false �meaning that the given input is

�We do not consider the Scheme programming language similar to Pascal� C or any other computer language used
just to implement algorithms� Scheme is a function�oriented description tool that can be more precise� expressive
and convenient than when using imperative computer programming languages� natural language or mathematical
notation�

	�

accepted or not�� The calculation looks as follows� q��ta� q��tb� ��� qn�tz� true�false�
where qi� the states of an automaton� are represented by procedures� Fundamentally� a
procedure call on ti generates a new procedure invokation on a modi�ed tape tj until �t or
�f is �nally returned� The contents of the tape are changed by side e�ects evoked by the
procedure that was running�� A particular acceptor is completely de�ned by its transition
system and the chosen type of communcation unit�

Experimenting with a dfa	 The only thing we had to do additionally is to explain the syntax
of init� and to point out that the dfa uses a read�only�tape� That�s all� Students were
experimenting with some di�erent instances of these types of acceptors that are passed several
inputs�

recon�g� is the key	 Students �gured out how recon�g� works in this particular case� Below
�gure 	� in section �� an example shows how such an investigation might look� The un�
derstanding of recon�g� helps to get feedback on which kind of language a dfa is associated
with�

Nondeterminism means cloning	 The fundamental idea of thinking about nondeterminism as
cloning is much more conceptional than as backtracking� Students understood very quickly
that a deterministic automaton needs only a few modi�cation of its transition system � but
not of the communication unit � to be a nondeterministic machine�

Our students had no di�culties in representing acceptors of di�erent types� They enjoyed run�
ning automata on several inputs and appreciated the semantical nearness between the conceptional
ideas and their representations using the proposed skeletons to implement automata� Based on this
experience most of the students were able to predict the whole relation between regular languages
and �nite automata�
Regarding pda that have to be taught later� we restricted the students to describe particular

kinds of acceptors that cover context�free languages� As expected they could not �nd an answer
immediately� However� after discussion of an additional stack memory they told us how they want
the reconfig
 method to work�

�It is important to take into consideration the di�erence between the traditional approach using a transition
function ��q� c� and a extended transition function ���q� w�� where c is a character and w is a word�

	�

� Examples

Most of the examples come from Kelley �
�� The source code is available at
http���www�inf�gr�htw�zittau�de��wagenkn� One can follow the Scheme session scripts or ex�
periment with the programs as much as is desired�
In order to get a printed transcript of the running automata� we inserted �printf ��a�n�a�n�

�contents tape� �qx�� where qx stands for the name of the appropriate state�

��� Deterministic �nite state automaton

q�

b a

a�b

a

b
q�

a�b
q�q�

a

a�b

a

b

b
q�

q�

q�

Figure 	�� Deterministic �nite state automata �accepts a�b� ab��

� �run dfa� 	q 	���� �a a b ����

���� �a a b ���

q

��� a� �a b ���

q�

��� a a� �b ���

q�

��� a a b� ����

q�

�t

� �run dfa� 	q 	���� �a a b b ����

���� �a a b b ���

q

��� a� �a b b ���

q�

��� a a� �b b ���

q�

��� a a b� �b ���

q�

��� a a b b� ����

q�

�f

�de�ne dfa	�

�lambda �start�
�eval
��letrec
��q� �lambda �tape� � Start

�printf ��a�n�a�n� �contents tape� �q��
�case �at tape�
��a� �recon�g� tape� �q	 tape��
��b� �recon�g� tape� �q� tape��
�else �f����

�q� �lambda �tape�
�printf ��a�n�a�n� �contents tape� �q��
�case �at tape�
��a� �recon�g� tape� �q� tape��
��b� �recon�g� tape� �q� tape��

	�

���� �t�
�else �f����

�q	 �lambda �tape�
�printf ��a�n�a�n� �contents tape� �q	�
�case �at tape�
��a� �recon�g� tape� �q
 tape��
��b� �recon�g� tape� �q� tape��
���� �t�
�else �f����

�q
 �lambda �tape�
�printf ��a�n�a�n� �contents tape� �q
�
�case �at tape�
��a� �recon�g� tape� �q
 tape��
��b� �recon�g� tape� �q� tape��
�else �f����

�q� �lambda �tape�
�printf ��a�n�a�n� �contents tape� �q��
�case �at tape�
��a� �recon�g� tape� �q� tape��
��b� �recon�g� tape� �q� tape��
���� �t�
�else �f����

�q� �lambda �tape�
�printf ��a�n�a�n� �contents tape� �q��
�case �at tape�
��a� �recon�g� tape� �q� tape��
��b� �recon�g� tape� �q� tape��
�else �f����

�q� �lambda �tape�
�printf ��a�n�a�n� �contents tape� �q��
�case �at tape�
��a� �recon�g� tape� �q� tape��
��b� �recon�g� tape� �q� tape��
���� �t�
�else �f�����

�let ��t �read�only�tape���
�lambda �input�
�init� t input�
�eval �list �start t��������

Recall that if the head is at a cell containing the blank symbol and the current state of the
automaton is a �nal state� the return value is �t �true��

	�

��� Nondeterministic �nite state automaton

This automaton accepts the same language as the dfa in �gure 	�� but it is nondeterministic�
without ��transitions�

b

b a

a
q�q�

q� q�

q�

a

b

Figure 	� Nondeterministic �nite state automata �accepts a�b� ab��

�de�ne nfa	�

�lambda �start�
�eval
��letrec
��q� �lambda �tape� � start

�printf ��a�n�a�n� �contents tape� �q��
�case �at tape�
��a� �recon�g� tape� �or �clone�and�run nfa�� �q� tape�

�clone�and�run nfa�� �q� tape���
��b� �recon�g� tape� �q
 tape��
�else �f����

�q� �lambda �tape�
�printf ��a�n�a�n� �contents tape� �q��
�case �at tape�
��a� �recon�g� tape� �q� tape��
��b� �recon�g� tape� �q	 tape��
�else �f����

�q	 �lambda �tape�
�printf ��a�n�a�n� �contents tape� �q	�
�case �at tape�
���� �t�
�else �f����

�q
 �lambda �tape�
�printf ��a�n�a�n� �contents tape� �q
�
�case �at tape�
���� �t�
�else �f����

�q� �lambda �tape�
�printf ��a�n�a�n� �contents tape� �q��
�case �at tape�

	�

��b� �recon�g� tape� �q� tape��
���� �t�
�else �f�����

�let ��t �read�only�tape���
�lambda �input�
�init� t input�
�eval �list �start t��������

� �run nfa� 	q 	���� �a a a b b ����

���� �a a a b b ���

q

��� a� �a a b b ���

q�

��� a a� �a b b ���

q�

��� a a a� �b b ���

q�

��� a a a b� �b ���

q�

��� a� �a a b b ���

q�

�f

� �run nfa� 	q 	���� �a a a b ����

���� �a a a b ���

q

��� a� �a a b ���

q�

��� a a� �a b ���

q�

��� a a a� �b ���

q�

��� a a a b� ����

q�

�t

� �run nfa� 	q 	���� �a b b ����

���� �a b b ���

q

��� a� �b b ���

q�

��� a b� �b ���

q�

��� a� �b b ���

q�

��� a b� �b ���

q�

��� a b b� ����

q�

�t

�

��� Nondeterministic �nite state automaton with �	transitions

a
B

A

H

�
a

� b

b

ba

S�

S�S

Figure 	�� Nondeterministic �nite state automaton with ��transitions

�de�ne nfa	

�lambda �start�
�eval
��letrec
��S �lambda �tape� � start

�printf ��a�n�a�n� �contents tape� �S�
�or �clone�and�run �nfa�	 �H tape��
�clone�and�run �nfa�	 �B tape��
�case �at tape�
��a� �recon�g� tape� �S� tape��
��b� �recon�g� tape� �S	 tape��
�else �f�����

�S� �lambda �tape�
�printf ��a�n�a�n� �contents tape� �S��
�case �at tape�
��b� �recon�g� tape� �A tape��
�else �f����

�A �lambda �tape�
�printf ��a�n�a�n� �contents tape� �A�
�case �at tape�
��b� �recon�g� tape� �S tape��
���� �t�
�else �f����

�S	 �lambda �tape�
�printf ��a�n�a�n� �contents tape� �S	�
�case �at tape�
��a� �recon�g� tape� �B tape��
�else �f����

�B �lambda �tape�
�printf ��a�n�a�n� �contents tape� �B�
�case �at tape�
��a� �recon�g� tape� �S tape��
�else �f����

	

�H �lambda �tape�
�printf ��a�n�a�n� �contents tape� �H�
�case �at tape�
���� �t�
�else �f�����

�let ��t �read�only�tape���
�lambda �input�
�init� t input�
�eval �list �start t��������

� �run nfa� 	S 	���� �a b ����

���� �a b ���

s

���� �a b ���

h

���� �a b ���

b

��� a� �b ���

s

��� a� �b ���

h

��� a� �b ���

b

��� a b� ����

s�

��� a� �b ���

s�

��� a b� ����

a

�t

� �run nfa� 	S 	���� �a b b ����

���� �a b b ���

s

���� �a b b ���

h

���� �a b b ���

b

��� a� �b b ���

s

��� a� �b b ���

h

��� a� �b b ���

b

��� a b� �b ���

s�

��� a� �b b ���

s�

��� a b� �b ���

a

��� a b b� ����

s

��� a b b� ����

h

�t

��� Nondeterministic pushdown automaton with �	transition

i � input to be multipushed onto the stack

�t�s��i� where t � top of stack� s � current symbol �tape��

�Z�b��BZ�B�a���
�B�b��BB

�A�b���
�Z�a��AZ�A�a��AA

halt
�Z����Z

start

Figure 	�� npda with ��transition

�de�ne npda	�

�lambda �start�
�eval
��letrec
��start � Start
�lambda �tape�stack�
�printf ��a�n�a�n� �contents tape�stack� �start�
�let ��symbol�top �at tape�stack���
�case �cadr symbol�top� � top of stack
��A� �case �car symbol�top�

��a� �recon�g� tape�stack �tape ��A A�� �start tape�stack��
��b� �recon�g� tape�stack �tape ���� �start tape�stack��
�else �f���

��B� �case �car symbol�top�
��a� �recon�g� tape�stack �tape ���� �start tape�stack��
��b� �recon�g� tape�stack �tape ��B B�� �start tape�stack��
�else �f���

��Z� �or �let ��t�s �read�only�tape�with�mp�stack���
�init� t�s �contents tape�stack��
�recon�g� t�s ��Z��
�clone�and�run npda�� �halt t�s��

�case �car symbol�top�
��a� �recon�g� tape�stack �tape ��A Z�� �start tape�stack��
��b� �recon�g� tape�stack �tape ��B Z�� �start tape�stack��
�else �f����

�else �f�����
�halt
�lambda �tape�stack�
�printf ��a�n�a�n� �contents tape�stack� �halt�
�let ��symbol�top �at tape�stack���
�case �car symbol�top�
���� �t�
�else �f������

�let ��t �read�only�tape�with�mp�stack���

�

�lambda �input�
�init� t input�
�eval �list �start t��������

� �run npda� 	start 	����� �a a a b b b ��� �Z���

����� �a a a b b b ��� �z��

start

����� �a a a b b b ��� �z��

halt

���� a� �a a b b b ��� �a z��

start

���� a a� �a b b b ��� �a a z��

start

���� a a a� �b b b ��� �a a a z��

start

���� a a a b� �b b ��� �a a z��

start

���� a a a b b� �b ��� �a z��

start

���� a a a b b b� ���� �z��

start

���� a a a b b b� ���� �z��

halt

�t

� �run npda� 	start 	����� �a b b ��� �Z���

����� �a b b ��� �z��

start

����� �a b b ��� �z��

halt

���� a� �b b ��� �a z��

start

���� a b� �b ��� �z��

start

���� a b� �b ��� �z��

halt

���� a b b� ���� �b z��

start

�f

��� Deterministic Turing machine

a��a�R����a�R�

���a�L�

���a�R�

halt

a��a�L�

a��a�R�

continue

maybe�doneloopright

Figure 	�� Deterministic Turing machine

�de�ne busy�beaver

�lambda �start�
�eval
��letrec
��loopright �lambda �tape�

�printf ��a�n�a�n� �contents tape� �loopright�
�case �at tape�
��a� �recon�g� tape �a �right� �loopright tape��
���� �recon�g� tape �a �right� �maybe�done tape��
�else �f����

�maybe�done �lambda �tape�
�printf ��a�n�a�n� �contents tape� �maybe�done�
�case �at tape�
��a� �recon�g� tape �a �right� �halt tape��
���� �recon�g� tape �a �left� �continue tape��
�else �f����

�continue �lambda �tape�
�printf ��a�n�a�n� �contents tape� �continue�
�case �at tape�
��a� �recon�g� tape �a �left� �maybe�done tape��
���� �recon�g� tape �a �right� �loopright tape��
�else �f����

�halt �lambda �tape�
�printf ��a�n�a�n� �contents tape� �halt�
�t���

�let ��t �read�write�tape���
�lambda �input�
�init� t input�
�eval �list �start t��������

� �run busy�beaver 	loopright 	���� �����

���� ����

loopright

��� a� ����

maybe�done

�

���� �a a ���

continue

���� �� a a ���

maybe�done

���� �� a a a ���

continue

��� a� �a a a ���

loopright

��� a a� �a a ���

loopright

��� a a a� �a ���

loopright

��� a a a a� ����

loopright

��� a a a a a� ����

maybe�done

��� a a a a� �a a ���

continue

��� a a a� �a a a ���

maybe�done

��� a a a a� �a a ���

halt

�t

� Conclusion

Many terms of the theory of formal languages and automata are constructive terms� We chose
automata� in particular acceptors� as an example to illustrate the new approach of using a real
programming language� like Scheme� to de�ne these terms in a way that captures the control by
functional representations� This approach yields signi�cant advantages over the ususal mathemat�
ical de�nitions�
The proposed approach is general� We de�ned an automaton as a transition machine possessing

a communication unit� To specify the particular type of automaton we have to select an appropriate
communication unit�
Our approach is based on the idea of learning by programming� Representing an automaton

with Scheme is one way to de�ne an automaton that forces a precise description of its behavior
when applied to an input� The idea di�ers from simply using software to simulate an automaton�s
behavior and then learning more about the automaton by modifying transition functions� Our
approach is not a black box approach�
We evaluated our approach in real teaching situations� Generally� there was positive student

feedback� observed in individual interviews with students and also evident in the discussions over�
heard between pairs of students working together at the same computer� Most of the time they
spoke about the behavior of automata in detail� This is precisely what we had hoped for�
What we will do next is to evaluate Scheme representation strategies for regular expressions�

automatic minimal dfa generation� and connections between automata and the appropriate kind of
generative grammar in formal language theory�

�

Acknowledgements

The �rst author would like to express his gratitude to many people who have contributed to this
paper� He would like to thank Suzanne Menzel and George Springer for reviewing the �rst version�
aiding with its translation� and pointing out areas of potential misunderstandings� He has bene�t�
ted from conversations with Matthias Felleisen �Rice University� and Frank Pietschmann �HTWS
Zittau!G"orlitz� about fundamental relationships between mathematics and computer science� He
would also like to express his appreciation to Chris Haynes for a discussion about object�oriented
programming� and to Vikram Subramaniam for discussions� support� and suggestions� Moreover�
he is grateful to the Computer Science Department at Indiana University for making his visit so
enjoyable� He would like to thank Dorai Sitaram who provided the TEX style for SLATEX� Finally
he would like to express his gratitude to the second author who inspired this paper with the words
�Come into my o�ce� I will show you a better way to do this��

References

�	� Friedman� Daniel P�� Wand� Mitchell� and Haynes� Christopher T� Essentials of

Programming Languages� Cambridge MA� MIT Press� and New York� McGraw�Hill� 	��
�

�
� Kelley� Dean Automata and Formal Languages� An Introduction� Englewood Cli�s NJ� Pren�
tice Hall� 	����

��� Martin� John C� Introduction to Languages and the Theory of Computation� New York�
McGraw�Hill� 	��	�

�� Springer� George� Friedman� Daniel P� Scheme and the Art of Programming� Cambridge
MA� MIT Press� and New York� McGraw�Hill� 	����

��� Wagenknecht� Christian Rekursion� Ein didaktischer Zugang mit Funktionen� Bonn�
D"ummler� 	���

�

Appendix

�de�ne recon�g�

�lambda ls

�let ���rst�part �list �car ls� �quote �recon�g�����
�cond
��null� �cdr ls�� �eval �rst�part��
��null� �cddr ls�� �eval �append �rst�part �list ��quote ��cadr ls������

�else
�eval �append �rst�part �list ��quote ��cadr ls�� ��quote ��caddr ls����������

�de�ne init�

�lambda �tape input�
�tape �init� input���

�de�ne contents

�lambda �tape�
�tape �show���

�de�ne at

�lambda �tape�
�tape �read���

�de�ne run

�lambda �automaton state�name input�
��automaton state�name� input���

�de�ne run�utm

�lambda �input�
��utm� input���

�de�ne clone�and�run

�lambda �automaton state�name tape�
��automaton state�name� �tape �show����

�

