

Die nachfolgende Schaltung soll an ihren Eingangsklemmen eine bestimmte, von der Beschaltung des Operationsverstärkers abhängige Impedanz erzeugen - sie stellt also ein Eintor dar. Der verwendete Operationsverstärker sei ideal. Folgende Werte sind gegeben: $R_1 = 2 \text{ k}\Omega$ $R_2 = 1 \text{ k}\Omega$ $R_0 = 2 \text{ k}\Omega$

- 1. Bestimmen Sie den Wert der Eingangsimpedanz $r_1 = u_1/i_1$ der gegebenen Schaltung! Um was für eine Eingangsimpedanz handelt es sich hier?
- 2. Wie ändert sich die Eingangsimpedanz, wenn für R_0 eine Kapazität C_0 verwendet wird? Erläutern Sie, um was für eine Eingangsimpedanz es sich dann handelt! Welcher Wert der Eingangsimpedanz ergibt sich bei einer Frequenz von f = 1 kHz und einem Kondensator von $C_0 = 50.6$ nF?

Mit Hilfe der nachfolgenden Schmitt-Trigger-Schaltung sollen die Umschaltschwellen $u_{ELH} = -u_{EHL} = 5V$ realisiert werden. Wie groß ist der Widerstand R_1 zu wählen, wenn R_0 einen Wert von $10~k\Omega$ hat, und die Ausgangsspannung die Werte $u_{AH} = -u_{AL} = 12V$ besitzt? Zeichnen Sie den quantitativen Verlauf (Zahlenwerte!) der Ausgangsspannung u_A bei einer Eingangsspannung von $u_E = 7V \sin(2*\pi*50 Hz*t)!$

